UNIVERSAL GENERATIVE MODELING FOR CALIBRATION-FREE PARALLEL MR IMAGING

被引:1
作者
Zhu, Wanqing [1 ]
Guan, Bing [1 ]
Wang, Shanshan [2 ]
Zhang, Minghui [1 ]
Liu, Qiegen [1 ]
机构
[1] Nanchang Univ, Dept Elect Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, SIAT, Shenzhen 518055, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
基金
中国国家自然科学基金;
关键词
Parallel imaging; MR image reconstruction; unsupervised learning; generative model; calibration-free; RECONSTRUCTION;
D O I
10.1109/ISBI52829.2022.9761446
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The integration of compressed sensing and parallel imaging (CS-PI) provides a robust mechanism for accelerating MRI acquisitions. However, most such strategies require the explicit formation of either coil sensitivity profiles or a cross-coil correlation operator, and as a result reconstruction corresponds to solving a challenging bilinear optimization problem. In this work, we present an unsupervised deep learning framework for calibration-free parallel MRI, coined universal generative modeling for parallel imaging (UGM-PI). More precisely, we make use of the merits of both wavelet transform and the adaptive iteration strategy in a unified framework. We train a powerful noise conditional score network by forming wavelet tensor as the network input at the training phase. Experimental results on both physical phantom and in vivo datasets implied that the proposed method is comparable and even superior to state-of-the-art CS-PI reconstruction approaches.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging [J].
Akcakaya, Mehmet ;
Moeller, Steen ;
Weingaertner, Sebastian ;
Ugurbil, Kamil .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) :439-453
[2]  
[Anonymous], 2011, Advances in Neural Information Processing Systems (NIPS)
[3]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[4]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[5]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[6]   P-LORAKS: Low-Rank Modeling of Local k-Space Neighborhoods with Parallel Imaging Data [J].
Haldar, Justin P. ;
Zhuo, Jingwei .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (04) :1499-1514
[7]   Learning a variational network for reconstruction of accelerated MRI data [J].
Hammernik, Kerstin ;
Klatzer, Teresa ;
Kobler, Erich ;
Recht, Michael P. ;
Sodickson, Daniel K. ;
Pock, Thomas ;
Knoll, Florian .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (06) :3055-3071
[8]   Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches [J].
Hussein, Sarfaraz ;
Kandel, Pujan ;
Bolan, Candice W. ;
Wallace, Michael B. ;
Bagci, Ulas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1777-1787
[9]  
Kingma DP, 2018, 32 C NEURAL INFORM P
[10]  
LeCun Y., 2015, Commun. Surveys Tuts., V521, P436, DOI [DOI 10.1038/nature14539, 10.1038/nature14539]