Residual Feature Aggregation Network for Image Super-Resolution

被引:145
作者
Liu, Jie [1 ]
Zhang, Wenjie [1 ]
Tang, Yuting [1 ]
Tang, Jie [1 ]
Wu, Gangshan [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.00243
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, very deep convolutional neural networks (CNNs) have shown great power in single image super-resolution (SISR) and achieved significant improvements against traditional methods. Among these CNN-based methods, the residual connections play a critical role in boosting the network performance. As the network depth grows, the residual features gradually focused on different aspects of the input image, which is very useful for reconstructing the spatial details. However, existing methods neglect to fully utilize the hierarchical features on the residual branches. To address this issue, we propose a novel residual feature aggregation (RFA) framework for more efficient feature extraction. The RFA framework groups several residual modules together and directly forwards the features on each local residual branch by adding skip connections. Therefore, the RFA framework is capable of aggregating these informative residual features to produce more representative features. To maximize the power of the RFA framework, we further propose an enhanced spatial attention (ESA) block to make the residual features to be more focused on critical spatial contents. The ESA block is designed to be lightweight and efficient. Our final RFANet is constructed by applying the proposed RFA framework with the ESA blocks. Comprehensive experiments demonstrate the necessity of our RFA framework and the superiority of our RFANet over state-of-the-art SISR methods.
引用
收藏
页码:2356 / 2365
页数:10
相关论文
共 38 条
[1]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[2]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[3]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[4]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[5]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[6]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[7]   Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers [J].
He, Jingwen ;
Dong, Chao ;
Qiao, Yu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11048-11056
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]   Meta-SR: A Magnification-Arbitrary Network for Super-Resolution [J].
Hu, Xuecai ;
Mu, Haoyuan ;
Zhang, Xiangyu ;
Wang, Zilei ;
Tan, Tieniu ;
Sun, Jian .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1575-1584
[10]  
Hu Yanting, 2018, ARXIVABS180708920