Noncommutative D=4 gravity coupled to fermions

被引:65
作者
Aschieri, Paolo [1 ,2 ]
Castellani, Leonardo [2 ]
机构
[1] Ctr Enrico Fermi Compendio Viminale, I-00184 Rome, Italy
[2] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
关键词
Non-Commutative Geometry; Classical Theories of Gravity; Space-Time Symmetries; GAUGE-THEORIES; DUALITY; SPACES; ALGEBRA; R-4;
D O I
10.1088/1126-6708/2009/06/086
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a noncommutative extension of Einstein-Hilbert gravity in the context of twist-deformed space-time, with a star-product associated to a quite general triangular Drinfeld twist. In particular the star-product can be chosen to be the usual Groenewald-Moyal product. The action is geometric, invariant under diffeomorphisms and centrally extended Lorentz star-gauge transformations. In the commutative limit it reduces to ordinary gravity, with local Lorentz invariance and usual real vielbein. This we achieve by imposing a charge conjugation condition on the noncommutative vielbein. The theory is coupled to fermions, by adding the analog of the Dirac action in curved space. A noncommutative Majorana condition can be imposed, consistent with the star-gauge transformations. Finally, we discuss the noncommutative version of the Mac-Dowell Mansouri action, quadratic in curvatures.
引用
收藏
页数:18
相关论文
共 32 条
[11]   THE LAGRANGIAN OF Q-POINCARE GRAVITY [J].
CASTELLANI, L .
PHYSICS LETTERS B, 1994, 327 (1-2) :22-28
[12]   DIFFERENTIAL-CALCULUS ON ISOQ(N), QUANTUM POINCARE ALGEBRA AND Q-GRAVITY [J].
CASTELLANI, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (02) :383-404
[13]   SL(2,C) gravity with a complex vierbein and its noncommutative extension -: art. no. 024015 [J].
Chamseddine, AH .
PHYSICAL REVIEW D, 2004, 69 (02)
[14]   An invariant action for noncommutative gravity in four dimensions [J].
Chamseddine, AH .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2534-2541
[15]  
Connes A, 1998, J HIGH ENERGY PHYS
[16]   Twisted invariances of noncommutative gauge theories [J].
Duenas-Vidal, Alvaro ;
Vazquez-Mozo, Miguel A. .
PHYSICS LETTERS B, 2008, 668 (01) :57-62
[17]   Twisted covariant noncommutative self-dual gravity [J].
Estrada-Jimenez, S. ;
Garcia-Compean, H. ;
Obregon, O. ;
Ramirez, C. .
PHYSICAL REVIEW D, 2008, 78 (12)
[18]  
Grosse H., 2006, Journal of Physics: Conference Series, V53, P764, DOI 10.1088/1742-6596/53/1/050
[19]   Renormalisation of σ4-theory on noncommutative R4 stop in the matrix base [J].
Grosse, H ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (02) :305-374
[20]  
Grosse H, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/08/008