Global rigidity for totally nonsymplectic Anosov Zk actions

被引:19
作者
Kalinin, Boris [1 ]
Sadovskaya, Victoria [1 ]
机构
[1] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
来源
GEOMETRY & TOPOLOGY | 2006年 / 10卷
基金
美国国家科学基金会;
关键词
D O I
10.2140/gt.2006.10.929
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a totally nonsymplectic (TNS) Anosov action of Z(k) which is either uniformly quasiconformal or pinched on each coarse Lyapunov distribution. We show that such an action on a torus is C-infinity-conjugate to an action by affine automorphisms. We also obtain similar global rigidity results for actions on an arbitrary compact manifold assuming that the coarse Lyapunov foliations are topologically jointly integrable.
引用
收藏
页码:929 / 954
页数:26
相关论文
共 50 条
[31]   ANOSOV ACTIONS ON NONCOMMUTATIVE ALGEBRAS [J].
EMCH, GG ;
NARNHOFER, H ;
THIRRING, W ;
SEWELL, GL .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) :5582-5599
[32]   Nil-Anosov actions [J].
Thierry Barbot ;
Carlos Maquera .
Mathematische Zeitschrift, 2017, 287 :1279-1305
[33]   SRB MEASURES FOR ANOSOV ACTIONS [J].
Bonthonneau, Yannick Guedes ;
Guillarmou, Colin ;
Weich, Tobias .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (03) :959-1026
[34]   Anosov representations and proper actions [J].
Gueritaud, Francois ;
Guichard, Olivier ;
Kassel, Fanny ;
Wienhard, Anna .
GEOMETRY & TOPOLOGY, 2017, 21 (01) :485-584
[35]   Joint integrability and spectral rigidity for Anosov diffeomorphisms [J].
Gogolev, Andrey ;
Shi, Yi .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 127 (06) :1693-1748
[36]   LOCAL LENS RIGIDITY FOR MANIFOLDS OF ANOSOV TYPE [J].
Cekic, Mihajlo ;
Guillarmou, Colin ;
Lefeuvre, Thibault .
ANALYSIS & PDE, 2024, 17 (08) :2737-2795
[37]   SPECTRAL RIGIDITY AND INVARIANT DISTRIBUTIONS ON ANOSOV SURFACES [J].
Paternain, Gabriel P. ;
Salo, Mikko ;
Uhlmann, Gunther .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 98 (01) :147-181
[38]   Marked boundary rigidity for surfaces of Anosov type [J].
Erchenko, Alena ;
Lefeuvre, Thibault .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
[39]   MARKED LENGTH SPECTRUM RIGIDITY FOR ANOSOV SURFACES [J].
Guillarmou, Colin ;
Lefeuvre, Thibault ;
Paternain, Gabriel p. .
DUKE MATHEMATICAL JOURNAL, 2025, 174 (01) :131-157
[40]   Entropy rigidity of Anosov flows in dimension three [J].
Foulon, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :1101-1112