Global rigidity for totally nonsymplectic Anosov Zk actions
被引:19
|
作者:
Kalinin, Boris
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USAUniv S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
Kalinin, Boris
[1
]
Sadovskaya, Victoria
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USAUniv S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
Sadovskaya, Victoria
[1
]
机构:
[1] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
来源:
GEOMETRY & TOPOLOGY
|
2006年
/
10卷
基金:
美国国家科学基金会;
关键词:
D O I:
10.2140/gt.2006.10.929
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider a totally nonsymplectic (TNS) Anosov action of Z(k) which is either uniformly quasiconformal or pinched on each coarse Lyapunov distribution. We show that such an action on a torus is C-infinity-conjugate to an action by affine automorphisms. We also obtain similar global rigidity results for actions on an arbitrary compact manifold assuming that the coarse Lyapunov foliations are topologically jointly integrable.
机构:
Univ Chicago, Dept Math, Chicago, IL 60637 USA
Univ WIsconsin Madison, Dept Math, Madison, WI 53706 USAUniv Chicago, Dept Math, Chicago, IL 60637 USA