On fixed points of rational transductions

被引:0
作者
Halava, Vesa [1 ,2 ]
Harju, Tero [1 ]
Sahla, Esa [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku, Finland
[2] Univ Turku, Turku Complex Syst Inst, Dept Math & Stat, Turku, Finland
关键词
Fixed points; Rational transductions; Post correspondence problem; Injective PCP; Decidability; MORPHISMS;
D O I
10.1016/j.tcs.2018.04.030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that it is undecidable whether or not an injective rational function (realized by a finite transducer) f : A* -> A* has a fixed point. The proof applies undecidability of the Post's Correspondence Problem for injective morphisms. As a corollary we obtain that the existence of a fixed point of injective computable functions is undecidable. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1997, Handbook of formal languages
[2]  
[Anonymous], 1979, Transductions and context-free languages
[3]  
Culik K., 1994, Results and Trends in Theoretical Computer Science. Colloquium in Honor of Arto Salomaa. Proceedings, P85
[4]  
Karhumäki J, 2010, DISCRETE MATH THEOR, V12, P9
[5]  
LATTEUX M, 1983, LECT NOTES COMPUT SC, V154, P420
[6]  
Lecerf M. Y., 1963, COMPTES RENDUS, V257, P2940
[7]   A VARIANT OF A RECURSIVELY UNSOLVABLE PROBLEM [J].
POST, EL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (04) :264-268
[8]  
Ruohonen K., 1985, Elektronische Informationsverarbeitung und Kybernetik (EIK), V21, P579
[9]  
Sakarovitch J., 2009, Elements of automata theory
[10]  
Salomaa A., 1973, Formal Languages