Some fixed-point theorems for mixed monotone operators in partially ordered probabilistic metric spaces

被引:11
作者
Wu, Jun [1 ]
机构
[1] Changsha Univ Sci Technol, Coll Math & Comp Sci, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear contractive mapping; probabilistic metric space; monotone operator; fixed point; NONLINEAR CONTRACTIONS; PHI-CONTRACTIONS;
D O I
10.1186/1687-1812-2014-49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some fixed-point theorems for nonlinear contractive operators in partially ordered Menger probabilistic metric spaces are proved. A new extension theorem of the probabilistic versions of Boyd and Wong's nonlinear contraction theorem is presented. As a consequence, our main results improve and generalize some recent coupled fixed-point theorems and coincidence-point theorems in (Ciric, Nonlinear Anal. 72: 2009-2018, 2010; Jachymski, Nonlinear Anal., 73:2199-2203, 2010; Ciric, Agarwal and Samet, Fixed Point Theory Appl. 2011:56, 2011).
引用
收藏
页数:12
相关论文
共 27 条
[1]   Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces [J].
Abbas, Mujahid ;
Nazir, Talat ;
Radenovic, Stojan .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9383-9395
[2]  
[Anonymous], 2011, Probabilistic Metric Spaces
[3]   Fixed point theorems in partially ordered metric spaces and applications [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1379-1393
[4]   Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations [J].
Cherichi, Meryam ;
Samet, Bessem .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-19
[5]   Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces [J].
Ciric, Ljubomir ;
Agarwal, Ravi P. ;
Samet, Bessem .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-13
[6]   Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces [J].
Ciric, Ljubomir .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :2009-2018
[7]  
Hadzic O., 1994, ZB RAD PRIROD MAT FA, V24, P197
[8]  
Hadzic O.:., 1979, Publications de l'Institut Mathmatique, V20, P107
[9]  
Hadzic O., 2001, Fixed Point Theory in Probabilistic Metric Spaces
[10]   Some fixed point generalizations are not real generalizations [J].
Haghi, R. H. ;
Rezapour, Sh. ;
Shahzad, N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1799-1803