Some special cyclic codes of length 2n

被引:4
作者
Singh, Manjit [1 ]
Batra, Sudhir [1 ]
机构
[1] Deenbandhu Chhotu Ram Univ Sci & Technol, Dept Math, Murthal 131039, India
关键词
Generator polynomials; cyclic codes; dual codes; self-dual codes; reversible codes; self-orthogonal codes; EXPLICIT FACTORIZATION;
D O I
10.1142/S0219498817500025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The explicit expressions of generator polynomials of cyclic codes of length 2(n) over finite fields are obtained. The coefficients of these generator polynomials and check polynomials are obtained through modular Lucas sequences. Further, using these polynomials, self-dual, reversible and self-orthogonal cyclic codes of length 2(n) are classified.
引用
收藏
页数:17
相关论文
共 11 条
[1]   MINIMAL QUADRATIC RESIDUE CYCLIC CODES OF LENGTH 2(n) [J].
Batra, Sudhir ;
Arora, S. K. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 18 (1-2) :25-43
[2]   EXPLICIT FACTORIZATION OF X2K+1 OVER F(P) WITH PRIME P-EQUIVALENT-TO-3 MOD 4 [J].
BLAKE, IF ;
GAO, SH ;
MULLIN, RC .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1993, 4 (02) :89-94
[3]   Explicit factorization of X2mpn-1 over a finite field [J].
Chen, Bocong ;
Li, Liangchen ;
Tuerhong, Rouziwanguli .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :95-104
[4]  
Huffman W. C., 2003, Fundamental of Error -correcting Codes
[5]  
Lidl R, 2003, INTRO FINITE FIELDS
[6]   REVERSIBLE CODES [J].
MASSEY, JL .
INFORMATION AND CONTROL, 1964, 7 (03) :369-&
[7]  
Meyn H., 1990, Applicable Algebra in Engineering, Communication and Computing, V1, P43, DOI 10.1007/BF01810846
[8]  
MEYN H, 1996, FINITE FIELDS APPL, V2, P439, DOI DOI 10.1006/ffta.1996.0026
[9]   Cyclic codes of length 2m [J].
Pruthi, M .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (04) :371-379
[10]  
Ribenboim Paulo, 1991, LITTLE BOOK BIG PRIM