Improved Dehydrogenation and Rehydrogenation Properties of LiBH4 by Nanosized Ni Addition

被引:27
作者
Li, Hai-Wen [1 ,2 ]
Yan, Yigang [3 ]
Akiba, Etsuo [1 ,2 ,4 ]
Orimo, Shin-ichi [5 ,6 ]
机构
[1] Kyushu Univ, Int Res Ctr Hydrogen Energy, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[3] EMPA, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland
[4] Kyushu Univ, Dept Mech Engn, Fukuoka 8190395, Japan
[5] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[6] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
hydrogen storage; borohydride; complex hydride; catalyst; hydrogen; REVERSIBLE HYDROGEN STORAGE; COMPOSITE; BOROHYDRIDE; TI;
D O I
10.2320/matertrans.MG201407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The complex hydride LiBH4, with a hydrogen density of 18.5 mass%, has been attracting significant interests for hydrogen storage, while suffers from its high dehydrogenation and rehydrogenation temperature. In this work, we systematically investigated the improvement effects of nanosized Ni on the dehydrogenation and rehydrogenation reactions of LiBH4 using thermogravimetry, quadrupole mass spectrometry and pressure-composition-isotherm analyses. Nanosized Ni was homogeneously dispersed on the surface of LiBH4 after ball milling. The dehydrogenation peak temperature of LiBH4 was reduced from 743 to 696 K with addition of 25 mass% Ni. First, LiBH4 tended to react with Ni to form Ni4B3, which suggests the thermodynamic destabilization effect of Ni. Then, the in-situ formed Ni4B3 was suggested to play a catalytic role on the dehydrogenation of the unreacted LiBH4. Moreover, the rehydrogenation content of LiBH4 was improved from 4.3 to 10.8 mass% by addition of 25 mass% Ni, suggesting the significant improvement effect of Ni4B3 on the rehydrogenation.
引用
收藏
页码:1134 / 1137
页数:4
相关论文
共 18 条
[1]   Modified lithium borohydrides for reversible hydrogen storage [J].
An, M ;
Jurgensen, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :7062-7067
[2]   Modified lithium borohydrides for reversible hydrogen storage (2) [J].
Au, Ming ;
Jurgensen, Arthur ;
Zeigler, Kristine .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (51) :26482-26487
[3]   Hydrogen sorption properties of MgH2-LiBH4 composites [J].
Boesenberg, Ulrike ;
Doppiu, Stefania ;
Mosegaard, Lene ;
Barkhordarian, Gagik ;
Eigen, Nico ;
Borgschulte, Andreas ;
Jensen, Torbert R. ;
Cerenius, Yngve ;
Gutfleisch, Oliver ;
Klassen, Thomas ;
Dornheim, Martin ;
Bormann, Ruediger .
ACTA MATERIALIA, 2007, 55 (11) :3951-3958
[5]   Microstructural study of the LiBH4-MgH2 reactive hydride composite with and without Ti-isopropoxide additive [J].
Deprez, E. ;
Justo, A. ;
Rojas, T. C. ;
Lopez-Cartes, C. ;
Minella, C. Bonatto ;
Boesenberg, U. ;
Dornheim, M. ;
Borrnann, R. ;
Fernandez, A. .
ACTA MATERIALIA, 2010, 58 (17) :5683-5694
[6]   The effect of Al on the hydrogen sorption mechanism of LiBH4 [J].
Friedrichs, O. ;
Kim, J. W. ;
Remhof, A. ;
Buchter, F. ;
Borgschulte, A. ;
Wallacher, D. ;
Cho, Y. W. ;
Fichtner, M. ;
Oh, K. H. ;
Zuettel, A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (10) :1515-1520
[7]   Reversible hydrogen storage in LiBH4-Al-LiH composite powder [J].
Jin, Seon-Ah ;
Shim, Jae-Hyeok ;
Cho, Young Whan ;
Yi, Kyung-Woo ;
Zabara, Oleg ;
Fichtner, Maximilian .
SCRIPTA MATERIALIA, 2008, 58 (11) :963-965
[8]   Reversible hydrogen storage in LiBH4 destabilized by milling with Al [J].
Kang, Xiang-Dong ;
Wang, Ping ;
Ma, Lai-Peng ;
Cheng, Hui-Ming .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (04) :963-966
[9]   Improvement Effects of TiCl3 on Dehydrogenation of Magnesium Borohydride Mg(BH4)2 [J].
Li, Hai-Wen ;
Matsumura, Daiju ;
Nishihata, Yasuo ;
Akiba, Etsuo ;
Orimo, Shin-ichi .
JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2013, 77 (12) :627-630
[10]   Recent Progress in Metal Borohydrides for Hydrogen Storage [J].
Li, Hai-Wen ;
Yan, Yigang ;
Orimo, Shin-ichi ;
Zuettel, Andreas ;
Jensen, Craig M. .
ENERGIES, 2011, 4 (01) :185-214