Neuroimaging and Machine Learning Algorithms to Identify Biological Subtypes of Schizophrenia

被引:0
|
作者
Shahab, Saba d [1 ,2 ]
Viviano, Joseph D. [2 ]
Pipitone, Jon [2 ]
Canas, Francisco [2 ]
Foussias, George [1 ,2 ,3 ]
Voineskos, Aristotle N. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
[2] Ctr Addict & Mental Hlth, Res Imaging Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Psychiat, Fac Med, Toronto, ON, Canada
基金
加拿大创新基金会;
关键词
schizophrenia; diffusion tensor imaging (DTI); machine learning; multivariate classification; neuroimaging;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1123
引用
收藏
页码:389S / 389S
页数:1
相关论文
共 50 条
  • [21] Recommendations for machine learning benchmarks in neuroimaging
    Leenings, Ramona
    Winter, Nils R.
    Dannlowski, Udo
    Hahn, Tim
    NEUROIMAGE, 2022, 257
  • [22] Translational machine learning for psychiatric neuroimaging
    Walter, Martin
    Alizadeh, Sarah
    Jamalabadi, Hamidreza
    Lueken, Ulrike
    Dannlowski, Udo
    Walter, Henrik
    Olbrich, Sebastian
    Colic, Lejla
    Kambeitz, Joseph
    Koutsouleris, Nikolaos
    Hahn, Tim
    Dwyer, Dominic B.
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2019, 91 : 113 - 121
  • [23] Machine Learning Algorithms Applied to Identify Microbial Species by Their Motility
    Riekeles, Max
    Schirmack, Janosch
    Schulze-Makuch, Dirk
    LIFE-BASEL, 2021, 11 (01): : 1 - 13
  • [24] Application of Machine Learning Algorithms to Identify Problematic Nuclear Data
    Grechanuk, Pavel A.
    Rising, Michael E.
    Palmer, Todd S.
    NUCLEAR SCIENCE AND ENGINEERING, 2021, 195 (12) : 1265 - 1278
  • [25] Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis
    Song, Da-Yea
    Topriceanu, Constantin-Cristian
    Ilie-Ablachim, Denis C.
    Kinali, Maria
    Bisdas, Sotirios
    NEURORADIOLOGY, 2021, 63 (12) : 2057 - 2072
  • [26] Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis
    Da-Yea Song
    Constantin-Cristian Topriceanu
    Denis C. Ilie-Ablachim
    Maria Kinali
    Sotirios Bisdas
    Neuroradiology, 2021, 63 : 2057 - 2072
  • [27] Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning
    Chand, Ganesh B.
    Dwyer, Dominic B.
    Erus, Guray
    Sotiras, Aristeidis
    Varol, Erdem
    Srinivasan, Dhivya
    Doshi, Jimit
    Pomponio, Raymond
    Pigoni, Alessandro
    Dazzan, Paola
    Kahn, Rene S.
    Schnack, Hugo G.
    Zanetti, Marcus V.
    Meisenzahl, Eva
    Busatto, Geraldo F.
    Crespo-Facorro, Benedicto
    Pantelis, Christos
    Wood, Stephen J.
    Zhuo, Chuanjun
    Shinohara, Russell T.
    Shou, Haochang
    Fan, Yong
    Gur, Ruben C.
    Gur, Raquel E.
    Satterthwaite, Theodore D.
    Koutsouleris, Nikolaos
    Wolf, Daniel H.
    Davatzikos, Christos
    BRAIN, 2020, 143 : 1027 - 1038
  • [28] Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual
    Lei, Du
    Pinaya, Walter H. L.
    Young, Jonathan
    van Amelsvoort, Therese
    Marcelis, Machteld
    Donohoe, Gary
    Mothersill, David O.
    Corvin, Aiden
    Vieira, Sandra
    Huang, Xiaoqi
    Lui, Su
    Scarpazza, Cristina
    Arango, Celso
    Bullmore, Ed
    Gong, Qiyong
    McGuire, Philip
    Mechelli, Andrea
    HUMAN BRAIN MAPPING, 2020, 41 (05) : 1119 - 1135
  • [29] NeuroCrypt: Machine Learning Over Encrypted Distributed Neuroimaging Data
    Senanayake, Nipuna
    Podschwadt, Robert
    Takabi, Daniel
    Calhoun, Vince D.
    Plis, Sergey M.
    NEUROINFORMATICS, 2022, 20 (01) : 91 - 108
  • [30] Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia
    Gongora Alonso, Susel
    Marques, Goncalo
    Agarwal, Deevyankar
    De la Torre Diez, Isabel
    Franco-Martin, Manuel
    SENSORS, 2022, 22 (07)