DIFFERENTIAL HARNACK AND LOGARITHMIC SOBOLEV INEQUALITIES ALONG RICCI-HARMONIC MAP FLOW

被引:11
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
关键词
Ricci-harmonic map heat flow; monotonicity formula; Harnack inequalities; ultracontractivity; heat semigroup; logarithmic Sobolev inequalities; CONJUGATE HEAT-EQUATION; KERNEL;
D O I
10.2140/pjm.2015.278.257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new family of entropy functionals which is proved to be monotonically nondecreasing along the Ricci-harmonic map heat flow. Some of the consequences of the monotonicity are combined to derive gradient estimates and Harnack inequalities for all positive solutions to the associated conjugate heat equation. We relate the entropy monotonicity and the ultracontractivity property of the heat semigroup, and as a result we obtain the equivalence of logarithmic Sobolev inequalities, conjugate heat kernel upper bounds and uniform Sobolev inequalities under Ricci-harmonic map heat flow.
引用
收藏
页码:257 / 290
页数:34
相关论文
共 29 条
[1]  
[Anonymous], C P LECT NOTES GEOME
[2]  
Aubin T., 1976, J Differential Geometry, V11, P573, DOI DOI 10.4310/JDG/1214433725
[3]  
Bailesteanu M., 2013, PREPRINT
[4]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[5]  
Cao H. D., 2003, SERIES GEOMETRY TOPO, V37
[6]   The conjugate heat equation and Ancient solutions of the Ricci flow [J].
Cao, Xiaodong ;
Zhang, Qi S. .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2891-2919
[7]   A LOWER BOUND FOR THE HEAT KERNEL [J].
CHEEGER, J ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :465-480
[8]  
Chow B., 2008, MATH SURVEYS MONOGRA, V144
[9]  
Chow B., 2004, MATH SURVEYS MONOGRA, V110
[10]  
Davies E.B., 1989, CAMBRIDGE TRACTS MAT, V92