SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS

被引:0
|
作者
Wacquet, Guillaume [1 ]
Hebert, Pierre-Alexandre
Poisson, Emilie Caillault
Hamad, Denis
机构
[1] Univ Lille Nord France, F-59000 Lille, France
来源
NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS | 2011年
关键词
K-way spectral clustering; Semi-supervised classification; Pairwise constraints;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a semi-supervised spectral clustering method able to integrate some limited supervisory information. This prior knowledge consists of pairwise constraints which indicate whether a pair of objects belongs to a same cluster (Must-Link constraints) or not (Cannot-Link constraints). The spectral clustering then aims at optimizing a cost function built as a classical Multiple Normalized Cut measure, modified in order to penalize the non-respect of these constraints. We show the relevance of the proposed method with an illustrative dataset and some UCI benchmarks, for which two-class and multi-class problems are dealt with. In all examples, a comparison with other semi-supervised clustering algorithms using pairwise constraints is proposed.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 50 条
  • [31] Research of semi-supervised spectral clustering based on constraints expansion
    Shifei Ding
    Bingjuan Qi
    Hongjie Jia
    Hong Zhu
    Liwen Zhang
    Neural Computing and Applications, 2013, 22 : 405 - 410
  • [32] Research of semi-supervised spectral clustering based on constraints expansion
    Ding, Shifei
    Qi, Bingjuan
    Jia, Hongjie
    Zhu, Hong
    Zhang, Liwen
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 : S405 - S410
  • [33] Semi-supervised dimensionality reduction using pairwise equivalence constraints
    Cevikalp, Hakan
    Verbeek, Jakob
    Jurie, Frederic
    Klaser, Alexander
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 489 - 496
  • [34] Semi-supervised image database categorization using pairwise constraints
    Grira, N
    Crucianu, M
    Boujemaa, N
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 3321 - 3324
  • [35] TextCSN: a Semi-Supervised Approach for Text Clustering Using Pairwise Constraints and Convolutional Siamese Network
    Vilhagra, Lucas Akayama
    Fernandes, Eraldo Rezende
    Nogueira, Bruno Magalhaes
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1135 - 1142
  • [36] Semi-supervised clustering with inaccurate pairwise annotations
    Gribel, Daniel
    Gendreau, Michel
    Vidal, Thibaut
    INFORMATION SCIENCES, 2022, 607 : 441 - 457
  • [37] AN EFFECTIVE SEMI-SUPERVISED CLUSTERING FRAMEWORK INTEGRATING PAIRWISE CONSTRAINTS AND ATTRIBUTE PREFERENCES
    Wang, Jinlong
    Wu, Shunyao
    Wen, Can
    Li, Gang
    COMPUTING AND INFORMATICS, 2012, 31 (03) : 597 - 612
  • [38] Deep multi-view semi-supervised clustering with sample pairwise constraints
    Chen, Rui
    Tang, Yongqiang
    Zhang, Wensheng
    Feng, Wenlong
    NEUROCOMPUTING, 2022, 500 : 832 - 845
  • [39] Semi-supervised clustering with two types of background knowledge: Fusing pairwise constraints and monotonicity constraints
    Gonzalez-Almagro, German
    Sanchez-Bermejo, Pablo
    Suarez, Juan Luis
    Cano, Jose-Ramon
    Garcia, Salvador
    INFORMATION FUSION, 2024, 102
  • [40] K-way Fast Approximate Spectral Clustering
    Zhu, Guofeng
    Wu, Chenjian
    Chen, Hong
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 1616 - 1620