Ellipsoidal Support Vector Machines

被引:0
|
作者
Momma, Michinari [1 ,3 ]
Hatano, Kohei [2 ]
Nakayama, Hiroki [3 ]
机构
[1] SAS Inst Japan, Tokyo, Japan
[2] Kyushu Univ, Fukuoka 812, Japan
[3] NEC Corp Ltd, Tokyo, Japan
来源
PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010) | 2010年 / 13卷
关键词
Bayes point machines; Support vector machines; Pegasos;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes the ellipsoidal SVM (e-SVM) that uses an ellipsoid center, in the version space, to approximate the Bayes point. Since SVM approximates it by a sphere center, e-SVM provides an extension to SVM for better approximation of the Bayes point. Although the idea has been mentioned before (Ruj'an (1997)), no work has been done for formulating and kernelizing the method. Starting from the maximum volume ellipsoid problem, we successfully formulate and kernelize it by employing relaxations. The resulting e-SVM optimization framework has much similarity to SVM; it is naturally extendable to other loss functions and other problems. A variant of the sequential minimal optimization is provided for efficient batch implementation. Moreover, we provide an online version of linear, or primal, e-SVM to be applicable for large-scale datasets.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 50 条
  • [21] Support Vector Machines with Neural Network
    Yanagimoto, Hidekazu
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES, 2017, 297 : 124 - 138
  • [22] Hidden space support vector machines
    Zhang, L
    Zhou, WD
    Hao, LC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (06): : 1424 - 1434
  • [23] Support vector machines as Bayes? classifiers
    Jackson, Peter L.
    OPERATIONS RESEARCH LETTERS, 2022, 50 (05) : 423 - 429
  • [24] Support vector machines for texture classification
    Kim, KI
    Jung, K
    Park, SH
    Kim, HJ
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (11) : 1542 - 1550
  • [25] Distributed Support Vector Machines: An Overview
    Wang, Dongli
    Zhou, Yan
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3897 - 3901
  • [26] Nonconvex Online Support Vector Machines
    Ertekin, Seyda
    Bottou, Leon
    Giles, C. Lee
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (02) : 368 - 381
  • [27] Image classification by support vector machines
    Zhang, YN
    Zhao, RC
    Leung, Y
    PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 360 - 363
  • [28] Normalization of Linear Support Vector Machines
    Feng, Yiyong
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (17) : 4673 - 4688
  • [29] Authorship attribution with support vector machines
    Diederich, J
    Kindermann, O
    Leopold, E
    Paass, G
    APPLIED INTELLIGENCE, 2003, 19 (1-2) : 109 - 123
  • [30] Support vector machines for face recognition
    Guo, GD
    Li, SZ
    Chan, KL
    IMAGE AND VISION COMPUTING, 2001, 19 (9-10) : 631 - 638