Ellipsoidal Support Vector Machines

被引:0
|
作者
Momma, Michinari [1 ,3 ]
Hatano, Kohei [2 ]
Nakayama, Hiroki [3 ]
机构
[1] SAS Inst Japan, Tokyo, Japan
[2] Kyushu Univ, Fukuoka 812, Japan
[3] NEC Corp Ltd, Tokyo, Japan
来源
PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010) | 2010年 / 13卷
关键词
Bayes point machines; Support vector machines; Pegasos;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes the ellipsoidal SVM (e-SVM) that uses an ellipsoid center, in the version space, to approximate the Bayes point. Since SVM approximates it by a sphere center, e-SVM provides an extension to SVM for better approximation of the Bayes point. Although the idea has been mentioned before (Ruj'an (1997)), no work has been done for formulating and kernelizing the method. Starting from the maximum volume ellipsoid problem, we successfully formulate and kernelize it by employing relaxations. The resulting e-SVM optimization framework has much similarity to SVM; it is naturally extendable to other loss functions and other problems. A variant of the sequential minimal optimization is provided for efficient batch implementation. Moreover, we provide an online version of linear, or primal, e-SVM to be applicable for large-scale datasets.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 50 条
  • [1] Support vector machines
    Mammone, Alessia
    Turchi, Marco
    Cristianini, Nello
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03) : 283 - 289
  • [2] Support vector machines
    Guenther, Nick
    Schonlau, Matthias
    STATA JOURNAL, 2016, 16 (04) : 917 - 937
  • [3] Support vector machines with applications
    Moguerza, Javier M.
    Munoz, Alberto
    STATISTICAL SCIENCE, 2006, 21 (03) : 322 - 336
  • [4] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [5] Sparseness of support vector machines
    Steinwart, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (06) : 1071 - 1105
  • [6] Faster Support Vector Machines
    Schlag S.
    Schmitt M.
    Schulz C.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [7] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [8] Support Vector Machines in R
    Karatzoglou, A
    Meyer, D
    Hornik, K
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (09):
  • [9] On coresets for support vector machines
    Tukan, Murad
    Baykal, Cenk
    Feldman, Dan
    Rus, Daniela
    THEORETICAL COMPUTER SCIENCE, 2021, 890 (890) : 171 - 191
  • [10] Possibilistic support vector machines
    Lee, K
    Kim, DW
    Lee, KH
    Lee, D
    PATTERN RECOGNITION, 2005, 38 (08) : 1325 - 1327