Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes

被引:54
|
作者
Lin, Yi-Li [1 ]
Chiou, Jheng-Hong [1 ]
Lee, Chung-Hsiang [1 ]
机构
[1] Natl Kaohsiung First Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Kaohsiung 824, Taiwan
关键词
Silica fouling; Pharmaceuticals and personal care products (PPCPs); Steric hindrance; Electrostatic repulsion; Hydrophobicity; Modified Hermia model; ORGANIC CONTAMINANTS; ACTIVE COMPOUNDS; WATER TREATMENT; WASTE-WATER; REJECTION; MECHANISMS; PRECURSORS; FILTRATION; TRANSPORT; COMPOUND;
D O I
10.1016/j.jhazmat.2014.01.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, one reverse osmosis (XLE) and two nanofiltration (NF90 and NF270) membranes were fouled by silica to evaluate its effect on the flux decline as well as the removal of six pharmaceuticals and personal care products (PPCPs) including carbamazapine (CBZ), triclosan (TRI), ibuprofen (IBU), sulfadiazine (DIA), sulfamethoxazole (SMX) and sulfamethazine (SMZ) from pH 3 to 10. The membranes were characterized by physicochemical properties including hydrophobicity, surface morphology and PPCPs adsorption with or without the presence of silica fouling to validate the rejection mechanisms of PPCPs. The fouling mechanisms were investigated using the modified Hermia model. It was found that all membranes with silica fouling showed more severe permeate flux decline at low pHs (3 and 5) than at high pHs (8 and 10) by the decomposition of nonionized silica particles to form a dense gel layer on membrane surfaces, which was hard to be removed by backwash. Silica fouling rendered the membrane surface considerably more hydrophilic, and only IBU, TRI and SMZ were adsorbed on membranes. Silica fouling on tight membranes (NF90 and XLE) can promote rejection of most PPCPs because the dense fouling layer could supply membrane with synergistic steric hindrance to reduce the transportation of PPCPs across membrane surface, implying that size exclusion is the dominating mechanism. While for loose NF270, electrostatic repulsion dominates by enhanced rejection of PPCPs as pH increased. Although fouling layer could provide extra steric hindrance for NF270, its effect was overwhelmed by the accompanied cake-enhanced concentration polarization phenomenon (CEOP). CEOP impeded back diffusion of PPCPs into the feed solution, trapped and accumulated PPCPs on membrane surface so as to increase their diffusion across membrane. At all pH levels, intermediate blocking and gel layer formation was the major fouling mechanism for tight and loose membrane, respectively. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 50 条
  • [1] Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes
    Lin, Yi-Li
    JOURNAL OF MEMBRANE SCIENCE, 2017, 542 : 342 - 351
  • [2] Mechanism of removal of pharmaceuticals and personal care products by nanofiltration membranes
    Yang, Haiyan
    Wang, Xinmiao
    DESALINATION AND WATER TREATMENT, 2015, 53 (10) : 2816 - 2824
  • [3] Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes
    Davor Dolar
    Ana Vukovi
    Danijela Aperger
    Kreimir Kouti
    Journal of Environmental Sciences, 2011, 23 (08) : 1299 - 1307
  • [4] Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes
    Dolar, Davor
    Vukovic, Ana
    Asperger, Danijela
    Kosutic, Kresimir
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2011, 23 (08) : 1299 - 1307
  • [5] Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes
    Davor Dolar
    Ana Vukovi
    Danijela Aperger
    Kreimir Kouti
    Journal of Environmental Sciences , 2011, (08) : 1299 - 1307
  • [6] Silica and metals removal by pretreatment to prevent fouling of reverse osmosis membranes
    Sheikholeslami, R
    Bright, J
    DESALINATION, 2002, 143 (03) : 255 - 267
  • [7] Silica fouling and cleaning of reverse osmosis membranes
    Koo, T
    Lee, YJ
    Sheikholeslami, R
    DESALINATION, 2001, 139 (1-3) : 43 - 56
  • [8] Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents
    Turan, M
    Ates, A
    Inanc, B
    WATER SCIENCE AND TECHNOLOGY, 2002, 45 (12) : 355 - 360
  • [9] Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes
    Yang, Linyan
    Xia, Caiping
    Jiang, Jielun
    Chen, Xueming
    Zhou, Yanbo
    Yuan, Cheng
    Bai, Lichun
    Meng, Shujuan
    Cao, Guomin
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 461
  • [10] Characterization of ion transfer and modeling of fouling in nanofiltration and reverse osmosis membranes
    Zeggar, Hajar
    Touir, Jamal
    El-Ghzizel, Soufian
    Elazhar, Fatima
    Tahaikt, Mustapha
    Dhiba, Driss
    Elmidaoui, Azzedine
    Taky, Mohamed
    DESALINATION AND WATER TREATMENT, 2021, 240 : 2 - 13