Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays)

被引:13
|
作者
Wang, Guifeng [1 ]
Zhong, Mingyu [1 ]
Wang, Jiajia [1 ]
Zhang, Jushan [1 ]
Tang, Yuanping [1 ]
Wang, Gang [1 ]
Song, Rentao [1 ]
机构
[1] Shanghai Univ, Sch Life Sci, Shanghai Key Lab Bioenergy Crops, Shanghai, Peoples R China
关键词
Alternative splicing; evolution; expression pattern; headless myosin; maize; myosin; CLASS-XI MYOSINS; ENDOPLASMIC-RETICULUM MOTILITY; F-ACTIN ORGANIZATION; EXON-B; ARABIDOPSIS; CELLS; LOCALIZATION; TOBACCO; VIII; PROTEIN;
D O I
10.1093/jxb/ert437
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.
引用
收藏
页码:923 / 938
页数:16
相关论文
共 50 条
  • [31] Genome-wide identification and expression analysis of the Glutamine synthetase family genes in Zea mays under drought stress
    Nawaz, Ayesha Fazal
    Zia, Muhammad Amir
    Shoukat, Shehla
    Arif, Muhammad
    Ali, Shaukat
    PLANT STRESS, 2023, 9
  • [32] Genome-Wide Analysis of Alternative Splicing in Zea mays: Landscape and Genetic Regulation
    Thatcher, Shawn R.
    Zhou, Wengang
    Leonard, April
    Wang, Bing-Bing
    Beatty, Mary
    Zastrow-Hayes, Gina
    Zhao, Xiangyu
    Baumgarten, Andy
    Li, Bailin
    PLANT CELL, 2014, 26 (09): : 3472 - 3487
  • [33] Genome-wide identification and expression analysis of the universal stress protein (USP) gene family in Arabidopsis thaliana, Zea mays, and Oryza sativa
    Fan, Mingxia
    Gao, Song
    Yang, Yating
    Yang, Shuang
    Wang, He
    Shi, Lei
    GENETICA, 2024, 152 (2-3) : 119 - 132
  • [34] Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions
    Li, Yidan
    Shan, Xiaohui
    Jiang, Zhilei
    Zhao, Lei
    Jin, Fengxue
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 621 - 633
  • [35] ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response
    Filyushin, Mikhail A.
    Kochieva, Elena Z.
    Shchennikova, Anna, V
    PLANTS-BASEL, 2022, 11 (22):
  • [36] Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize
    Qian, Yexiong
    Xi, Yilong
    Cheng, Beijiu
    Zhu, Suwen
    PLANT CELL REPORTS, 2014, 33 (10) : 1661 - 1672
  • [37] Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize
    Yexiong Qian
    Yilong Xi
    Beijiu Cheng
    Suwen Zhu
    Plant Cell Reports, 2014, 33 : 1661 - 1672
  • [38] Erratum to: Genome-wide Analysis of Zinc Transporter Genes of Maize (Zea mays)
    Tapan Kumar Mondal
    Showkat Ahmad Ganie
    Mukesh Kumar Rana
    Tilak Raj Sharma
    Plant Molecular Biology Reporter, 2014, 32 : 779 - 779
  • [39] Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize
    Bishop, Eugene H.
    Kumar, Rohit
    Luo, Feng
    Saski, Christopher
    Sekhon, Rajandeep S.
    GENOMICS, 2020, 112 (02) : 1233 - 1244
  • [40] Genome-wide isolation of resistance gene analogs in maize (Zea mays L.)
    Xiao Wenkai
    Xu Mingliang
    Zhao Jiuren
    Wang Fengge
    Li Jiansheng
    Dai Jingrui
    THEORETICAL AND APPLIED GENETICS, 2006, 113 (01) : 63 - 72