Testing the locality of transport in self-gravitating accretion discs

被引:299
作者
Lodato, G
Rice, WKM
机构
[1] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[2] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
关键词
accretion; accretion discs; gravitation; instabilities; stars : formation; galaxies : active;
D O I
10.1111/j.1365-2966.2004.07811.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we examine the issue of characterizing the transport associated with gravitational instabilities in relatively cold discs, discussing in particular the conditions under which it can be described within a local, viscous framework. We present the results of global, three-dimensional, smoothed particle hydrodynamics simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parametrization for the cooling function. Our simulations show that the disc settles in a 'self-regulated' state, where the axisymmetric stability parameter Qapproximate to 1 and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, as long as the disc mass is smaller than 0.25M(star) and the aspect ratio H/Rless than or similar to 0.1, transport is determined locally, thus allowing for a viscous treatment of the disc evolution.
引用
收藏
页码:630 / 642
页数:13
相关论文
共 52 条
[1]   THE DISKS OF T-TAURI STARS WITH FLAT INFRARED-SPECTRA [J].
ADAMS, FC ;
LADA, CJ ;
SHU, FH .
ASTROPHYSICAL JOURNAL, 1988, 326 (02) :865-883
[2]   Episodic accretion in magnetically layered protoplanetary discs [J].
Armitage, PJ ;
Livio, M ;
Pringle, JE .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 324 (03) :705-711
[3]   DYNAMICS OF BINARY-DISK INTERACTION .1. RESONANCES AND DISK GAP SIZES [J].
ARTYMOWICZ, P ;
LUBOW, SH .
ASTROPHYSICAL JOURNAL, 1994, 421 (02) :651-667
[4]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[5]   On the dynamical foundations of α disks [J].
Balbus, SA ;
Papaloizou, JCB .
ASTROPHYSICAL JOURNAL, 1999, 521 (02) :650-658
[6]   VON-NEUMANN STABILITY ANALYSIS OF SMOOTHED PARTICLE HYDRODYNAMICS - SUGGESTIONS FOR OPTIMAL-ALGORITHMS [J].
BALSARA, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 121 (02) :357-372
[7]  
Bate M., 1995, THESIS U CAMBRIDGE
[8]   MODELING ACCRETION IN PROTOBINARY SYSTEMS [J].
BATE, MR ;
BONNELL, IA ;
PRICE, NM .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 277 (02) :362-376
[9]   A SURVEY FOR CIRCUMSTELLAR DISKS AROUND YOUNG STELLAR OBJECTS [J].
BECKWITH, SVW ;
SARGENT, AI ;
CHINI, RS ;
GUSTEN, R .
ASTRONOMICAL JOURNAL, 1990, 99 (03) :924-945
[10]   USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS [J].
BELL, KR ;
LIN, DNC .
ASTROPHYSICAL JOURNAL, 1994, 427 (02) :987-1004