First-principles theoretical analysis and electron energy loss spectroscopy of vacancy defects in bulk and nonpolar (10(1)over-bar0) surface of GaN

被引:5
作者
Nayak, Sanjay [1 ]
Naik, Mit H. [2 ]
Jain, Manish [2 ]
Waghmare, Umesh, V [3 ]
Shivaprasad, Sonnada M. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Indian Inst Sci, Ctr Condensed Matter Theory, Dept Phys, Bangalore 560012, Karnataka, India
[3] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Theoret Sci Unit, Bangalore 560064, Karnataka, India
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2020年 / 38卷 / 06期
关键词
POINT-DEFECTS; NATIVE DEFECTS; HIGH-POWER; AB-INITIO; PSEUDOPOTENTIALS; FERROMAGNETISM; IMPURITIES; PARAMETERS; STATE; GAAS;
D O I
10.1116/6.0000402
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We determine atomic structure, electronic structure, formation energies, magnetic properties of native point defects, such as gallium (Ga) and nitrogen (N) vacancies, in bulk and at the nonpolar (10 (1) over bar0) surface of wurtzite gallium nitride (w-GaN) using first-principles density functional theory (DFT) based calculations. In bulk and at the (10 (1) over bar0) surface of GaN, N vacancies are significantly more stable than Ga vacancies under both Ga-rich and N-rich conditions. We show that within DFT-local density approximated N vacancies form spontaneously at the (10 (1) over bar0) surface of GaN when doped to raise the Fermi level up to approximate to 1.0 eV above valence band maximum (VBM) while with valence band edge correction it is 1.79 eV above VBM. We provide experimental evidence for occurrence of N vacancies with electron energy loss spectroscopy measurements, which further hints the N vacancies at surface to the source of auto-doping which may explain high electrical conductivity of GaN nanowall network grown with molecular beam epitaxy. Published under license by AVS.
引用
收藏
页数:14
相关论文
共 70 条
[1]  
[Anonymous], 2008, ANN ALLERG ASTHMA S, V100, pS1, DOI DOI 10.1103/PHYSREVLETT.100.117204
[2]  
[Anonymous], 2014, EARLY HUM DEV S1, V90, pS35, DOI DOI 10.1103/PHYSREVB.90.075203
[3]  
[Anonymous], 2014, EARLY HUM DEV S1, V90, pS35, DOI DOI 10.1103/PHYSREVB.90.125118
[4]  
[Anonymous], 2004, TERZA SERIE, V70, pIII, DOI DOI 10.1103/PHYSREVB.70.245208
[5]   Role of quantum confinement in giving rise to high electron mobility in GaN nanowall networks [J].
Bhasker, H. P. ;
Thakur, Varun ;
Shivaprasad, S. M. ;
Dhar, S. .
SOLID STATE COMMUNICATIONS, 2015, 220 :72-76
[6]   High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy [J].
Bhasker, H. P. ;
Dhar, S. ;
Sain, A. ;
Kesaria, Manoj ;
Shivaprasad, S. M. .
APPLIED PHYSICS LETTERS, 2012, 101 (13)
[7]   NATIVE DEFECTS IN GALLIUM NITRIDE [J].
BOGUSLAWSKI, P ;
BRIGGS, EL ;
BERNHOLC, J .
PHYSICAL REVIEW B, 1995, 51 (23) :17255-17258
[8]   Atomic and electronic structure of single and multiple vacancies in GaN nanowires from first-principles [J].
Carter, Damien J. ;
Stampfl, Catherine .
PHYSICAL REVIEW B, 2009, 79 (19)
[9]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[10]  
Chao P., 2007, CHINESE PHYS LETT, V24, P2048