Thermalization in the discrete nonlinear Klein-Gordon chain in the wave-turbulence framework

被引:35
作者
Pistone, L. [1 ]
Onorato, M. [1 ,2 ]
Chibbaro, S. [3 ]
机构
[1] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, CNRS, Inst Jean Le Rond dAlembert, F-75005 Paris, France
关键词
CHAOS;
D O I
10.1209/0295-5075/121/44003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time of equipartition, T-eq, of energy in the one-dimensional Discrete Nonlinear Klein-Gordon (DNKG) equation in the framework of the Wave Turbulence (WT) theory. We discuss the applicability of the WT theory and show how this approach can explain qualitatively the route to thermalization and the scaling of the equipartition time as a function of the nonlinear parameter epsilon, defined as the ratio between the nonlinear and linear part of the Hamiltonian. Two scaling laws, T-eq alpha epsilon(-2) and T-eq alpha epsilon(-4), for different degrees of nonlinearity are explained in terms of four-wave or six-wave processes in the WT theory. The predictions are verified with extensive numerical simulations varying the system size and the degree of nonlinearity. Copyright (C) EPLA, 2018
引用
收藏
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 2014, Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline
[2]   Energy transport in weakly anharmonic chains [J].
Aoki, Kenichiro ;
Lukkarinen, Jani ;
Spohn, Herbert .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (05) :1105-1129
[3]  
Arnold V. I., 1963, Russian Mathematical Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[4]  
Arnold VI., 1961, IZV AKAD NAUK SSSR M, V25, P21
[5]   The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics [J].
Benettin, G. ;
Christodoulidi, H. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) :195-212
[6]   Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit [J].
Benettin, G. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :793-812
[7]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[8]   The role of the number of degrees of freedom and chaos in macroscopic irreversibility [J].
Cerino, L. ;
Cecconi, F. ;
Cencini, M. ;
Vulpiani, A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 :486-497
[9]   4-wave dynamics in kinetic wave turbulence [J].
Chibbaro, Sergio ;
Dematteis, Giovanni ;
Rondoni, Lamberto .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 362 :24-59
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379