A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones

被引:21
|
作者
Xu, Shoujiang [1 ,2 ]
Tang, Qingfeng [1 ]
Jin, Linpeng [1 ]
Pan, Zhigeng [1 ]
机构
[1] Hangzhou Normal Univ, Virtual Real & Intelligent Syst Res Inst, Hangzhou 311121, Zhejiang, Peoples R China
[2] Jiangsu Food & Pharmaceut Sci Coll, Sch Informat Engn, Huaian 223001, Peoples R China
基金
国家重点研发计划;
关键词
human activity recognition; cascade ensemble learning model; smartphone; sensor; extremely gradient boosting trees; Random Forest; extremely randomized trees; Softmax Regression; NEURAL-NETWORKS; SENSORS;
D O I
10.3390/s19102307
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human activity recognition (HAR) has gained lots of attention in recent years due to its high demand in different domains. In this paper, a novel HAR system based on a cascade ensemble learning (CELearning) model is proposed. Each layer of the proposed model is comprised of Extremely Gradient Boosting Trees (XGBoost), Random Forest, Extremely Randomized Trees (ExtraTrees) and Softmax Regression, and the model goes deeper layer by layer. The initial input vectors sampled from smartphone accelerometer and gyroscope sensor are trained separately by four different classifiers in the first layer, and the probability vectors representing different classes to which each sample belongs are obtained. Both the initial input data and the probability vectors are concatenated together and considered as input to the next layer's classifiers, and eventually the final prediction is obtained according to the classifiers of the last layer. This system achieved satisfying classification accuracy on two public datasets of HAR based on smartphone accelerometer and gyroscope sensor. The experimental results show that the proposed approach has gained better classification accuracy for HAR compared to existing state-of-the-art methods, and the training process of the model is simple and efficient.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep Learning Models for Real-time Human Activity Recognition with Smartphones
    Wan, Shaohua
    Qi, Lianyong
    Xu, Xiaolong
    Tong, Chao
    Gu, Zonghua
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (02) : 743 - 755
  • [2] An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
    Ankita
    Rani, Shalli
    Babbar, Himanshi
    Coleman, Sonya
    Singh, Aman
    Aljahdali, Hani Moaiteq
    SENSORS, 2021, 21 (11)
  • [3] Deep Learning Models for Real-time Human Activity Recognition with Smartphones
    Shaohua Wan
    Lianyong Qi
    Xiaolong Xu
    Chao Tong
    Zonghua Gu
    Mobile Networks and Applications, 2020, 25 : 743 - 755
  • [4] Trends in human activity recognition using smartphones
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2021, 7 (03) : 189 - 213
  • [5] Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning
    Zhu, Ran
    Xiao, Zhuoling
    Li, Ying
    Yang, Mingkun
    Tan, Yawen
    Zhou, Liang
    Lin, Shuisheng
    Wen, Hongkai
    IEEE ACCESS, 2019, 7 : 75490 - 75499
  • [6] An Ensemble Bayesian Dynamic Linear Model for Human Activity Recognition
    Pitombeira-Neto, Anselmo R.
    de Franca, Diego S.
    Cruz, Livia A.
    da Silva, Ticiana L. C.
    de Macedo, Jose F. Antonio
    IEEE ACCESS, 2025, 13 : 30316 - 30333
  • [7] Assessment of IMU Configurations for Human Activity Recognition Using Ensemble Learning
    Murphy, Samuel J.
    Vitali, Rachel V.
    IEEE ACCESS, 2024, 12 : 111433 - 111442
  • [8] Lightweight human activity recognition learning model
    Nan J.
    Jian Z.-H.
    Ning C.-F.
    Dai W.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (06): : 1072 - 1079
  • [9] Human Activity Recognition Using Smartphones With WiFi Signals
    Lin, Guiping
    Jiang, Weiwei
    Xu, Sicong
    Zhou, Xiaobo
    Guo, Xing
    Zhu, Yujun
    He, Xin
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2023, 53 (01) : 142 - 153
  • [10] Human Activity Recognition Using Smartphones
    Bulbul, Erhan
    Cetin, Aydin
    Dogru, Ibrahim Alper
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 57 - 62