GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL OPERATORS

被引:38
作者
Coriasco, Sandro [1 ]
Ruzhansky, Michael [2 ]
机构
[1] Univ Turin, Dipartimento Matemat G Peano, I-10126 Turin, Italy
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Fourier integral operators; global L-p(R-n) boundedness; BOUNDEDNESS;
D O I
10.1090/S0002-9947-2014-05911-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish global L-p(R-n)-regularity properties of Fourier integral operators. The orders of decay of the amplitude are determined for operators to be bounded on L-p(R-n), 1 < p < infinity, as well as to be bounded from Hardy space H-1(R-n) to L-1(R-n). This extends local L-p-regularity properties of Fourier integral operators, as well as results of global L-2(R-n) boundedness, to the global setting of L-p(R-n). Global boundedness in weighted Sobolev spaces W-s(sigma,p) (R-n) is also established, and applications to hyperbolic partial differential equations are given.
引用
收藏
页码:2575 / 2596
页数:22
相关论文
共 38 条
[2]  
Asada K., 1978, Japan J. Math, V4, P299, DOI DOI 10.4099/MATH1924.4.299
[3]  
BEALS M, 1982, MEM AM MATH SOC, V264
[4]   Precise L(2) estimations for oscillating integrals [J].
Boulkhemair, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (1-2) :165-184
[5]  
CALDERON AP, 1971, J MATH SOC JPN, V23, P374
[6]   L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS [J].
CHILDS, AG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 61 (02) :252-254
[7]  
Coifman Ronald R., 1978, ASTERISQUE, V57
[8]   On the global boundedness of Fourier integral operators [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodino, Luigi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (04) :373-398
[9]   BOUNDEDNESS OF FOURIER INTEGRAL OPERATORS ON FLp SPACES [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodino, Luigi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) :6049-6071
[10]  
Cordes H. O., 1995, LONDON MATH SOC LECT, V202