Promotion effect of Mn2+ and Co2+ on selenate reduction by zero-valent iron

被引:34
|
作者
Tang, Cilai [1 ,2 ]
Huang, Yong H. [2 ]
Zeng, Hui [2 ]
Zhang, Zengqiang [3 ]
机构
[1] China Three Gorges Univ, Coll Hydraul & Environm Engn, Dept Environm Engn, Yichang 443002, Hubei, Peoples R China
[2] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[3] Northwest A&F Univ China, Coll Resources & Environm, Yangling 712700, Shaanxi, Peoples R China
关键词
Zero-valent iron; Selenate removal; Cobalt; Manganese; SELENIUM; REMOVAL; WATER; NANOPARTICLES; GROUNDWATER; ADSORPTION; IONS; REMEDIATION; DESORPTION; MANGANESE;
D O I
10.1016/j.cej.2014.01.059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Our previous work demonstrated that Fe2+ could overcome the passivation of zero-valent iron (ZVI or Fe-0) and sustain iron reactivity for rapid selenate reduction. Due to the similar chemical properties to Fe2+ and co-existence in ZVI material as impurities, Mn2+ and Co2+ were evaluated as an alternative in selenate removal by ZVI. The results of batch experiments showed that Co2+ and Mn2+, especially the former, significantly enhanced selenate removal by ZVI. Co2+ promoted Fe2+ release and the formation of a bimetallic (Co-0-Fe-0) catalytic system by redox reaction. Co2+ and Mn2+ provided around 69% and 30% electron for selenate reduction, respectively. Selenite (Se-IV) was the predominant reductive product in the presence of Co2+; however, selenite and elemental Se (Se-0) were the main reductive products in the presence of Mn2+. Adsorbed selenate and selenite could be further reduced to elemental Se and even selenide by ZVI in the presence of Co2+ and Mn2+, identified by XPS analysis and sequential extraction test. The roles and evolution of Co2+ and Mn2+, and selenate removal mechanism were also comprehensively investigated by spectroscopic and chemical analysis. This study indicates that the co-existent of Co2+ and Mn2+ would be positive for selenate removal. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 50 条
  • [1] Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism
    Zhang, Yalei
    Chen, Wen
    Dai, Chaomeng
    Zhou, Chuanlong
    Zhou, Xuefei
    SCIENTIFIC REPORTS, 2015, 5
  • [2] Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion
    Yoon, In-Ho
    Kim, Kyoung-Woong
    Bang, Sunbaek
    Kim, Min Gyu
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 104 (1-2) : 185 - 192
  • [3] Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing
    Sun, Yuqing
    Chen, Season S.
    Tsang, Daniel C. W.
    Graham, Nigel J. D.
    Ok, Yong Sik
    Feng, Yujie
    Li, Xiang-Dong
    CHEMOSPHERE, 2017, 167 : 163 - 170
  • [4] Kinetics of selenite reduction by zero-valent iron
    Liang, Liping
    Jiang, Xiao
    Yang, Wenjun
    Huang, Yuying
    Guan, Xiaohong
    Li, Lina
    DESALINATION AND WATER TREATMENT, 2015, 53 (09) : 2540 - 2548
  • [5] Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles
    Liu, Hongfang
    Cai, Zhengqing
    Zhao, Xiao
    Zhao, Dongye
    Qian, Tianwei
    Bozack, Michael
    Zhang, Mingang
    WATER ENVIRONMENT RESEARCH, 2016, 88 (08) : 694 - 703
  • [6] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Phanthasri, Jakkapop
    Grisdanurak, Nurak
    Khamdahsag, Pummarin
    Wantala, Kitirote
    Khunphonoi, Rattabal
    Wannapaiboon, Suttipong
    Tanboonchuy, Visanu
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05)
  • [7] Degradation of Para-nitrochlorobenzene by the Combination of Zero-valent Iron Reduction and Persulfate Oxidation in Soil
    Chen, Fu
    Zeng, Siyan
    Ma, Jing
    Zhu, Qianlin
    Zhang, Shaoliang
    WATER AIR AND SOIL POLLUTION, 2018, 229 (10)
  • [8] Efficient selenate removal by zero-valent iron in the presence of weak magnetic field
    Liang, Liping
    Guan, Xiaohong
    Huang, Yuying
    Ma, Jingyuan
    Sun, Xueping
    Qiao, Junlian
    Zhou, Gongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 156 : 1064 - 1072
  • [9] Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism
    Yoon, In-Ho
    Bang, Sunbaek
    Kim, Kyoung-Woong
    Kim, Min Gyu
    Park, Sang Yoon
    Choi, Wang-Kyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (02) : 1081 - 1090
  • [10] The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron
    Song, Hocheol
    Jeon, Byong-Hun
    Chon, Chul-Min
    Kim, Yongje
    Nam, In-Hyun
    Schwartz, Franklin W.
    Cho, Dong-Wan
    CHEMOSPHERE, 2013, 93 (11) : 2767 - 2773