Systematic Enhancement of Thermoelectric Figure of Merit in Edge-Engineered Nanoribbons

被引:3
|
作者
Wirth, Luke J. [1 ]
Farajian, Amir A. [1 ]
机构
[1] Wright State Univ, Dept Mech & Mat Engn, Dayton, OH 45435 USA
关键词
THERMAL-CONDUCTIVITY; QUANTUM; TRANSPORT; SILICENE; GRAPHENE; CONDUCTANCE; SIMULATION; EFFICIENCY; FORMULA;
D O I
10.1021/acs.jpcc.8b02132
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanomaterials provide unique promise to thermoelectric energy conversion owing to their possible phonon confinement and reduced thermal conductivity. These effects can, in particular, occur in nanoribbons upon edge-engineering. Here, we study graphene, boron nitride, and silicene chevron nanoribbons (CNRs) because of their high edge-length to surface area ratio to assess phonon boundary scattering effects on improving the thermoelectric figure of merit (ZT). The ab initio based nonequilibrium Green's function method is utilized to calculate quantum electronic and phononic thermal conductance, electrical conductance, and Seebeck coefficient. Our results show that, compared to straight nanoribbons, ZT in CNRs is systematically enhanced. Detailed contributions to CNRs' ZT for different geometries and materials are analyzed, in particular, separation of electrical and electron-contributed thermal conductance versus chemical potential. Taking the corresponding recent fabrications into account, edge-engineering of nanoribbons is shown to provide a possible strategy for achieving competitive thermoelectric energy conversion.
引用
收藏
页码:8843 / 8852
页数:10
相关论文
共 50 条
  • [31] Thermoelectric Figure of Merit Enhancement in Bi2Te3-Coated Bi Composites
    Lan, T. W.
    Chen, Y. C.
    Ho, J. C.
    Shyu, S. G.
    Chen, Y. Y.
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (09) : 2326 - 2330
  • [32] Exploring Resonance Levels and Nanostructuring in the PbTe-CdTe System and Enhancement of the Thermoelectric Figure of Merit
    Ahn, Kyunghan
    Han, Mi-Kyung
    He, Jiaqing
    Androulakis, John
    Ballikaya, Sedat
    Uher, Ctirad
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (14) : 5227 - 5235
  • [33] Thermoelectric Figure of Merit Enhancement in Bi2Te3-Coated Bi Composites
    T. W. Lan
    Y. C. Chen
    J. C. Ho
    S. G. Shyu
    Y. Y. Chen
    Journal of Electronic Materials, 2012, 41 : 2326 - 2330
  • [34] The upper limit of thermoelectric figure of merit: importance of electronic thermoelectric efficiency
    Li, Jing
    Yeung, Tin Cheung Au
    Kam, Chan Hin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (08)
  • [35] Reproducible high thermoelectric figure of merit in Ag2Se
    Jakhar, Navita
    Kedia, Dinesh Kumar
    Kumar, Ankit
    Saurabh, Kumar
    Singh, Surjeet
    APPLIED PHYSICS LETTERS, 2023, 122 (16)
  • [36] Thermoelectric figure of merit of τ-type conductors of several donors
    Yoshino, H.
    Aizawa, H.
    Kuroki, K.
    Anyfantis, G. C.
    Papavassiliou, G. C.
    Murata, K.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (11) : S79 - S81
  • [37] Thermoelectric figure of merit of a p-n junction
    Yu. I. Ravich
    D. A. Pshenai-Severin
    Semiconductors, 2001, 35 : 1161 - 1165
  • [38] Strained endotaxial nanostructures with high thermoelectric figure of merit
    Biswas, Kanishka
    He, Jiaqing
    Zhang, Qichun
    Wang, Guoyu
    Uher, Ctirad
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    NATURE CHEMISTRY, 2011, 3 (02) : 160 - 166
  • [39] Thermoelectric figure of merit of a p-n junction
    Ravich, YI
    Pshenai-Severin, DA
    SEMICONDUCTORS, 2001, 35 (10) : 1161 - 1165
  • [40] Enhanced thermoelectric figure of merit in vertical graphene junctions
    Nguyen, V. Hung
    Nguyen, M. Chung
    Huy-Viet Nguyen
    Saint-Martin, J.
    Dollfus, P.
    APPLIED PHYSICS LETTERS, 2014, 105 (13)