Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

被引:72
作者
Zhang, Biao [1 ,2 ,4 ]
Ye, Ding-ding [1 ,2 ]
Sui, Pang-Chieh [3 ]
Djilali, Ned [3 ,4 ]
Zhu, Xun [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Chongqing 400030, Peoples R China
[3] Univ Victoria, Inst Integrated Energy Syst IESVic, Victoria, BC V8W 3P6, Canada
[4] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Microfluidic fuel cell; Membraneless fuel cell; Air-breathing; Flow-through; Flow-over; Mass transport; LAMINAR-FLOW; METHANOL; PERFORMANCE; TRANSPORT; CROSSOVER;
D O I
10.1016/j.jpowsour.2014.02.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 37 条
[1]   Improved fuel utilization in microfluidic fuel cells: A computational study [J].
Bazylak, A ;
Sinton, D ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :57-66
[2]   Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform [J].
Brushett, Fikile R. ;
Zhou, Wei-Ping ;
Jayashree, Ranga S. ;
Kenis, Paul J. A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :B565-B571
[3]   Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel [J].
Chang, Min-Hsing ;
Chen, Falin ;
Fang, Nai-Siang .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :810-816
[4]   Analysis of membraneless formic acid microfuel cell using a planar microchannel [J].
Chen, Falin ;
Chang, Min-Hsing ;
Lin, Mu-Kun .
ELECTROCHIMICA ACTA, 2007, 52 (07) :2506-2514
[5]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60
[6]   Fabrication and preliminary testing of a planar membraneless microchannel fuel cell [J].
Cohen, JL ;
Westly, DA ;
Pechenik, A ;
Abruña, HD .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :96-105
[7]   Electricity generation from decomposition of hydrogen peroxide [J].
Hasegawa, S ;
Shimotani, K ;
Kishi, K ;
Watanabe, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (02) :A119-A121
[8]   Microfluidic hydrogen fuel cell with a liquid electrolyte [J].
Jayashree, Ranga S. ;
Mitchell, Michael ;
Natarajan, Dilip ;
Markoski, Larry J. ;
Kenis, Paul J. A. .
LANGMUIR, 2007, 23 (13) :6871-6874
[9]   On the performance of membraneless laminar flow-based fuel cells [J].
Jayashree, Ranga S. ;
Yoon, Seong Kee ;
Brushett, Fikile R. ;
Lopez-Montesinos, Pedro O. ;
Natarajan, Dilip ;
Markoski, Larry J. ;
Kenis, Paul J. A. .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3569-3578
[10]   Air-breathing laminar flow-based microfluidic fuel cell [J].
Jayashree, RS ;
Gancs, L ;
Choban, ER ;
Primak, A ;
Natarajan, D ;
Markoski, LJ ;
Kenis, PJA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (48) :16758-16759