Poly(3,4-ethylenedioxythiophene) Sheath Over a SnO2 Hollow Spheres/Graphene Oxide Hybrid for a Durable Anode in Li-Ion Batteries

被引:60
作者
Bhaskar, Akkisetty [1 ]
Deepa, Melepurath [2 ]
Ramakrishna, M. [3 ]
Rao, T. N. [4 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Mat Sci & Engn, Yeddumailaram 502205, Andhra Pradesh, India
[2] Indian Inst Technol Hyderabad, Dept Chem, Yeddumailaram 502205, Andhra Pradesh, India
[3] ARCI, Ctr Mech & Microstruct Characterizat, Hyderabad 500005, Andhra Pradesh, India
[4] ARCI, Ctr Nanomat, Hyderabad 500005, Andhra Pradesh, India
关键词
FACILE SYNTHESIS; LITHIUM; PERFORMANCE; STORAGE; NANOSTRUCTURES; NANOTUBES; COMPOSITE; ELECTRODE; GRAPHENE; SPHERES;
D O I
10.1021/jp412038y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2 hollow spheres (HSs) were synthesized by a hydrothermal route by use of an organic additive (2-mercaptopropionic acid or MPA) and a cationic surfactant (cetyltrimethyl ammonium bromide or CTAB). The progressive transformation of SnO2 solid spheres to SnO2 HSs 140-150 nm in dimensions wherein a thin shell of densely packed SnO2 crystallites with a tetragonal crystal structure surrounds an empty core was followed by scanning- and transmission-electron microscopy. The roles of MPA as the HS structure-directing agent, CTAB as the moiety which prevents HS aggregation, and water as the solvent crucial for hollow core formation were independently determined by elaborate morphological analyses. With the goal of realizing superior electrochemical performance, hybrids of optimized SnO2 HSs embedded in graphene oxide (GO) nanosheets and enveloped by a sheath of a conducting polymer, poly(3,4-ethylenedioxythiophene) or PEDOT, were also synthesized; the continuity of the amorphous PEDOT coating on SnO2 HS/GO was confirmed by elemental mapping and X-ray photoelectron spectroscopy. Galvanostatic charge-discharge studies revealed an initial reversible capacity of 990 mA h g(-1) for SnO2 HSs at a current density of 100 mA g(-1), and a capacity of 400 mA h g(-1) was retained after 30 cycles. A significant improvement in cycling performance was achieved in the SnO2 HS/GO/PEDOT hybrid, as the synergy between the moderately high intrinsic electronic conductivity of GO nanosheets and the ability of PEDOT to buffer the volume change during repetitive Li+ charge discharge more efficiently compared to pristine SnO2 HS impart a capacity of 608 mA h g(-1) at a current density of 100 mA g(-1) to the hybrid, retained at the end of 150 cycles, and the latter value was similar to 1248 mA h when the mass of only the SnO2 HS in the hybrid was considered. The SnO2 HS/GO/PEDOT hybrid also showed an excellent rate capability as a capacity of 381 mA h g(-1) was attained even at a high current density of 2000 mA g(-1). We demonstrate the viability of the SnO2 HS/GO/PEDOT hybrid as a durable high performance anode for Li-ion batteries.
引用
收藏
页码:7296 / 7306
页数:11
相关论文
共 50 条
  • [41] Yttrium Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Composite Cathode Material for Aqueous Zinc-Ion Batteries
    Kumankuma-Sarpong, James
    Guo, Wei
    Fu, Yongzhu
    SMALL METHODS, 2021, 5 (09)
  • [42] SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries
    Wei, Wei
    Song, Ling-Xiao
    Guo, Lin
    CHINESE CHEMICAL LETTERS, 2015, 26 (01) : 124 - 128
  • [43] Graphene supported poly-pyrrole(PPY)/Li2SnO3 ternary composites as anode materials for lithium ion batteries
    Zhao, Yang
    Huang, Ying
    Wang, Qiufen
    CERAMICS INTERNATIONAL, 2013, 39 (06) : 6861 - 6866
  • [44] Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries
    Dhanabalan, Abirami
    Li, Xifei
    Agrawal, Richa
    Chen, Chunhui
    Wang, Chunlei
    NANOMATERIALS, 2013, 3 (04): : 606 - 614
  • [45] Air electrode based on poly( 3,4-ethylenedioxythiophene) microflower/graphene composite for superior Li-O2 batteries with excellent cycle performance
    Yoon, S. H.
    Park, Y. J.
    RSC ADVANCES, 2017, 7 (89) : 56752 - 56759
  • [46] Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries
    Liu, Xin
    Wu, Minghao
    Li, Mingrun
    Pan, Xiulian
    Chen, Jian
    Bao, Xinhe
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (33) : 9527 - 9535
  • [47] Fabrication and Characterization of a Poly(3,4-ethylenedioxythiophene)@Tungsten Trioxide-Graphene Oxide Hybrid Electrode Nanocomposite for Supercapacitor Applications
    Memou, Cherifa Hakima
    Bekhti, Mohamed Amine
    Kiari, Mohamed
    Benyoucef, Abdelghani
    Alelyani, Magbool
    Alqahtani, Mohammed S.
    Alshihri, Abdulaziz A.
    Bakkour, Youssef
    NANOMATERIALS, 2023, 13 (19)
  • [48] Microwave assisted poly(3,4-ethylenedioxythiophene)-reduced graphene oxide nanocomposite supported Pt as durable electrocatalyst for polymer electrolyte fuel cells
    Selvaganesh, S. Vinod
    Dhanasekaran, P.
    Chetty, Raghuram
    Bhat, Santoshkumar D.
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (13) : 10724 - 10732
  • [49] Optimization of Li2SnO3 Synthesis for Anode Material Application in Li-ion Batteries
    Musa, N.
    Woo, H. J.
    Teo, L. P.
    Arof, A. K.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (04) : 5169 - 5177
  • [50] SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability
    Jiang, Wenjuan
    Zhao, Xike
    Ma, Zengsheng
    Lin, Jianguo
    Lu, Chunsheng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (04) : 4136 - 4140