Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors

被引:184
作者
Xu, Wei [1 ]
Huang, Long-Biao [1 ]
Wong, Man-Chung [1 ,2 ]
Chen, Li [1 ,2 ]
Bai, Gongxun [1 ,2 ]
Hao, Jianhua [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
POLY(VINYL ALCOHOL) HYDROGELS; BIOMEDICAL APPLICATIONS; FLEXIBLE ELECTRONICS; PAPER; SUPERCAPACITORS; BIODEGRADATION; PERFORMANCE; CONVERSION; POLYMERS; SYSTEM;
D O I
10.1002/aenm.201601529
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs), as a promising energy harvesting technology, have been rapidly developed in recent years. However, the research based on fully flexible and environmentally friendly TENGs is still limited. Herein, for the first time, a hydrogel-based triboelectric nanogenerator (Hydrogel-TENG) with high flexibility, recyclability, and environmental friendliness simultaneously has been demonstrated. The standard Hydrogel-TENG can generate a maximum output power of 2 mW at a load resistance of 10 M Omega. The tube-shaped Hydrogel-TENG can harvest mechanical energy from various human motions, including bending, twisting, and stretching. Furthermore, the system can serve as self-powered sensors to detect the human motions. Additionally, the utilized Polyvinyl Alcohol hydrogel employed in this study is recyclable to benefit for fabricating the renewable TENG. The open-circuit voltage of renewed hydrogel-TENG can reach up to 92% of the pristine output voltage. This research will pave a potential approach for the development of flexible energy sources and self-powered motion sensors in environmentally friendly way.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Modification of polysiloxane polymers for biomedical applications: a review [J].
Abbasi, F ;
Mirzadeh, H ;
Katbab, AA .
POLYMER INTERNATIONAL, 2001, 50 (12) :1279-1287
[2]   Biomedical applications of hydrogels: A review of patents and commercial products [J].
Calo, Enrica ;
Khutoryanskiy, Vitaliy V. .
EUROPEAN POLYMER JOURNAL, 2015, 65 :252-267
[3]   A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes [J].
Chen, Zheng ;
To, John W. F. ;
Wang, Chao ;
Lu, Zhenda ;
Liu, Nan ;
Chortos, Alex ;
Pan, Lijia ;
Wei, Fei ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[4]   Biodegradation of poly (vinyl alcohol) based materials [J].
Chiellini, E ;
Corti, A ;
D'Antone, S ;
Solaro, R .
PROGRESS IN POLYMER SCIENCE, 2003, 28 (06) :963-1014
[5]   Hydrogel-based devices for biomedical applications [J].
Deligkaris, Kosmas ;
Tadele, Tadele Shiferaw ;
Olthuis, Wouter ;
van den Berg, Albert .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02) :765-774
[6]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[7]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[8]   Double-network hydrogels with extremely high mechanical strength [J].
Gong, JP ;
Katsuyama, Y ;
Kurokawa, T ;
Osada, Y .
ADVANCED MATERIALS, 2003, 15 (14) :1155-+
[9]   Metal sensitivity in patients with orthopaedic implants [J].
Hallab, N ;
Merritt, K ;
Jacobs, JJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2001, 83A (03) :428-436
[10]   Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions [J].
Huang, Long-Biao ;
Bai, Gongxun ;
Wong, Man-Chung ;
Yang, Zhibin ;
Xu, Wei ;
Hao, Jianhua .
ADVANCED MATERIALS, 2016, 28 (14) :2744-2751