Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials

被引:437
作者
Seayad, AM [1 ]
Antonelli, DM [1 ]
机构
[1] Univ Windsor, Dept Chem & Biochem, Windsor, ON N9B 3P4, Canada
关键词
D O I
10.1002/adma.200306557
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An overview of recent advances in the application of non-carbonaceous nanostructured and composite materials in hydrogen storage is presented in this review. The main focus is on complex hydrides, non-graphitic nanotubes, and other porous composite and framework materials since carbon nanotubes have been the subject of numerous other reviews. Recent advances in the area of alanates show a promising reversible absorption capability of up to 5%, closing in on the projected Department of Energy (DOE) target of 6%. Non-carbon nanotubes mainly showed a sorption capacity of 1-3 wt.-%, although a promising level of 4.2 wt.-% is shown by boron nitride nanotubes after collapse of their walls. Other interesting materials included here are lithium nitride and porous metallo-organic frameworks.
引用
收藏
页码:765 / 777
页数:13
相关论文
共 130 条
[1]  
ALIELLO R, 1998, INT J HYDROGEN ENERG, V23, P1103
[2]   A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst [J].
Amendola, SC ;
Sharp-Goldman, SL ;
Janjua, MS ;
Spencer, NC ;
Kelly, MT ;
Petillo, PJ ;
Binder, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :969-975
[3]   An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst [J].
Amendola, SC ;
Sharp-Goldman, SL ;
Janjua, MS ;
Kelly, MT ;
Petillo, PJ ;
Binder, M .
JOURNAL OF POWER SOURCES, 2000, 85 (02) :186-189
[4]   Hydrogen desorption kinetics in transition metal modified NaAlH4 [J].
Anton, DL .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 :400-404
[5]   DIRECT SYNTHESIS OF NA3AIH6 [J].
ASHBY, EC ;
KOBETZ, P .
INORGANIC CHEMISTRY, 1966, 5 (09) :1615-&
[6]   MECHANICAL ALLOYING [J].
BENJAMIN, JS .
SCIENTIFIC AMERICAN, 1976, 234 (05) :40-49
[7]   Onboard storage alternatives for hydrogen vehicles [J].
Berry, GD ;
Aceves, SM .
ENERGY & FUELS, 1998, 12 (01) :49-55
[8]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9
[9]   Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy [J].
Bogdanovic, B ;
Felderhoff, M ;
Germann, M ;
Härtel, M ;
Pommerin, A ;
Schüth, F ;
Weidenthaler, C ;
Zibrowius, B .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 350 (1-2) :246-255
[10]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58