A Hybrid Hypergraph Partitioning Algorithm for Scientific Computing

被引:0
作者
Zeng Yao-yuan [1 ]
Zhao Wen-tao [2 ]
Wang Zheng-hua [1 ]
机构
[1] Natl Univ Def Technol, Inst Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Acad Equipment, Laser Propuls & Appl Lab, Beijing 101416, Peoples R China
来源
MATERIALS PROCESSING AND MANUFACTURING III, PTS 1-4 | 2013年 / 753-755卷
基金
中国国家自然科学基金;
关键词
multiway hypergraph partitioning; simulated annealing; global optimization; tabu search; local optimization;
D O I
10.4028/www.scientific.net/AMR.753-755.2900
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hypergraph partitioning is an increasingly important and widely studied research topic in parallel scientific computing. In this paper, we present a multiway hypergraph partitioning algorithm, mixed simulated annealing algorithm for global optimization and tabu search algorithm for local optimization. Experiments on the benchmark suite of several unstructured meshes show that, for 2-, 4-, 8-, 16- and 32-way partitioning, the quality of partition produced by our algorithm are on the average 6% and the maximum 17% better than those produced by partitioning software hMETIS in term of the cutsize metric.
引用
收藏
页码:2900 / +
页数:2
相关论文
共 6 条
[1]  
Catalyurek U.V., 2007, PROC 21 INT PARALLEL, DOI DOI 10.1109/IPDPS.2007.370258
[2]  
Devine K. D., 2006, P 20 IEEE INT PAR DI, P10, DOI [10.1109/IPDPS.2006.1639359, DOI 10.1109/IPDPS.2006.1639359]
[3]  
Fiduccia C.M., 1982, DES AUT C, V7, P175
[4]   Tabu search with multi-level neighborhood structures for high dimensional problems [J].
Hedar, Abdel-Rahman ;
Ali, Ahmed Fouad .
APPLIED INTELLIGENCE, 2012, 37 (02) :189-206
[5]  
Karypis G, 2009, Metis-a software package for partitioning unstructured graphs, partitioning meshes and computing fill-reducing ordering of sparse matrices
[6]   Comparative Performance of Modified Simulated Annealing with Simple Simulated Annealing for Graph Coloring Problem [J].
Pal, Anindya Jyoti ;
Ray, Biman ;
Zakaria, Nordin ;
Sen Sarma, Samar .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 :321-327