Tracing the international arrivals of SARS-CoV-2 Omicron variants after Aotearoa New Zealand reopened its border

被引:20
作者
Douglas, Jordan [1 ]
Winter, David [2 ]
McNeill, Andrea [2 ]
Carr, Sam [2 ]
Bunce, Michael [2 ]
French, Nigel [3 ,4 ]
Hadfield, James [5 ]
de Ligt, Joep [2 ]
Welch, David [1 ]
Geoghegan, Jemma L. [2 ,6 ]
机构
[1] Univ Auckland, Ctr Computat Evolut, Sch Comp Sci, Auckland, New Zealand
[2] Inst Environm Sci & Res, Wellington, New Zealand
[3] Massey Univ, Tawharau Ora Sch Vet Sci, Palmerston North, New Zealand
[4] Inst Environm Sci & Res, Infect Dis Res Platform, Niwha, Palmerston North, New Zealand
[5] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[6] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
关键词
COVID-19; ELIMINATION; GENOMICS; STRATEGY; VIRUS;
D O I
10.1038/s41467-022-34186-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the second quarter of 2022, there was a global surge of emergent SARS-CoV-2 lineages that had a distinct growth advantage over then-dominant Omicron BA.1 and BA.2 lineages. By generating 10,403 Omicron genomes, we show that Aotearoa New Zealand observed an influx of these immune-evasive variants (BA.2.12.1, BA.4, and BA.5) through the border. This is explained by the return to significant levels of international travel following the border's reopening in March 2022. We estimate one Omicron transmission event from the border to the community for every similar to 5,000 passenger arrivals at the current levels of travel and restriction. Although most of these introductions did not instigate any detected onward transmission, a small minority triggered large outbreaks. Genomic surveillance at the border provides a lens on the rate at which new variants might gain a foothold and trigger new waves of infection.
引用
收藏
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 2022, ESR WASTEWATER SURVE
[2]   Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic [J].
Attwood, Stephen W. ;
Hill, Sarah C. ;
Aanensen, David M. ;
Connor, Thomas R. ;
Pybus, Oliver G. .
NATURE REVIEWS GENETICS, 2022, 23 (09) :547-562
[3]   Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST [J].
Baele, Guy ;
Lemey, Philippe ;
Rambaut, Andrew ;
Suchard, Marc A. .
BIOINFORMATICS, 2017, 33 (12) :1798-1805
[4]  
Baker MG, 2021, NEW ZEAL MED J, V134, P8
[5]   Elimination could be the optimal response strategy for covid-19 and other emerging pandemic diseases [J].
Baker, Michael G. ;
Wilson, Nick ;
Blakely, Tony .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 371
[6]  
Baker MG, 2020, NEW ZEAL MED J, V133, P10
[7]   The End of the Elimination Strategy: Decisive Factors towards Sustainable Management of COVID-19 in New Zealand [J].
Blair, Alicia ;
de Pasquale, Mattia ;
Gabeff, Valentin ;
Rufi, Melanie ;
Flahault, Antoine .
EPIDEMIOLOGIA, 2022, 3 (01) :135-147
[8]  
Bouckaert R., 2022, BIORXIV
[9]   BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis [J].
Bouckaert, Remco ;
Vaughan, Timothy G. ;
Barido-Sottani, Joelle ;
Duchene, Sebastian ;
Fourment, Mathieu ;
Gavryushkina, Alexandra ;
Heled, Joseph ;
Jones, Graham ;
Kuehnert, Denise ;
De Maio, Nicola ;
Matschiner, Michael ;
Mendes, Fabio K. ;
Mueller, Nicola F. ;
Ogilvie, Huw A. ;
du Plessis, Louis ;
Popinga, Alex ;
Rambaut, Andrew ;
Rasmussen, David ;
Siveroni, Igor ;
Suchard, Marc A. ;
Wu, Chieh-Hsi ;
Xie, Dong ;
Zhang, Chi ;
Stadler, Tanja ;
Drummond, Alexei J. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
[10]   An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference [J].
Bouckaert, Remco R. .
SYSTEMATIC BIOLOGY, 2022, :1549-1560