Elementary proofs that Z2p and Z3p are CI-groups 3

被引:10
作者
Alspach, B [1 ]
Nowitz, LA [1 ]
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/eujc.1999.0309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide elementary proofs that the groups Z(p)(2) and Z(p)(3) are CI-groups for Cayley color digraphs, Cayley digraphs, Cayley color graphs and Cayley graphs. (C) 1999 Academic Press.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 1967, J. Combinatorial Theory
[2]  
[Anonymous], 1983, ARS COMBINATORIA
[3]  
BABAI L, 1977, ACTA MATH ACAD SCI H, V29, P329
[4]  
Babai L., 1978, COMBINATORICA, V18, P3552
[5]   On isomorphisms of finite Cayley graphs [J].
Conder, M ;
Li, CH .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (08) :911-919
[6]   Isomorphism problem for Cayley graphs of Z(p)(3) [J].
Dobson, E .
DISCRETE MATHEMATICS, 1995, 147 (1-3) :87-94
[7]   Isomorphisms of finite Cayley digraphs of bounded valency [J].
Li, CH ;
Praeger, CE ;
Xu, MY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 73 (02) :164-183
[8]   On the isomorphism problem for finite Cayley graphs of bounded valency [J].
Li, CH ;
Praeger, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (04) :279-292
[9]   A NON-CAYLEY-INVARIANT CAYLEY GRAPH OF THE ELEMENTARY ABELIAN GROUP OF ORDER-64 [J].
NOWITZ, LA .
DISCRETE MATHEMATICS, 1992, 110 (1-3) :223-228
[10]  
XU MY, 1988, ADV MATH, V17, P427