Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming

被引:90
|
作者
Osima, Sarah [1 ]
Indasi, Victor S. [2 ]
Zaroug, Modathir [2 ,9 ,10 ]
Endris, Hussen Seid [3 ]
Gudoshava, Masilin [3 ,13 ]
Misiani, Herbert O. [3 ]
Nimusiima, Alex [5 ]
Anyah, Richard O. [4 ]
Otieno, George [3 ]
Ogwang, Bob A. [6 ,14 ]
Jain, Suman [8 ]
Kondowe, Alfred L. [1 ]
Mwangi, Emmah [7 ]
Lennard, Chris [2 ]
Nikulin, Grigory [11 ]
Dosio, Alessandro [12 ]
机构
[1] Tanzania Meteorol Agcy, Dar Es Salaam, Tanzania
[2] Univ Cape Town, Climate Syst Anal Grp, Cape Town, South Africa
[3] IGAD Climate Predict & Applicat Ctr, Nairobi, Kenya
[4] Univ Connecticut, Storrs, CT USA
[5] Makerere Univ, Kampala, Uganda
[6] Uganda Natl Meteorol Author, Kampala, Uganda
[7] Kenya Meteorol Dept, Nairobi, Kenya
[8] Univ Zambia, Lusaka, Zambia
[9] Univ Cape Town, African Climate & Dev Initiat, Cape Town, South Africa
[10] Nile Basin Initiat Secretariat, Entebbe, Uganda
[11] Swedish Meteorol & Hydrol Inst, Rossby Ctr, Norrkoping, Sweden
[12] European Commiss, Joint Res Ctr, Ispra, Italy
[13] Natl Univ Sci & Technol, Bulawayo, Zimbabwe
[14] African Ctr Meteorol Applicat Dev, Niamey, Niger
来源
ENVIRONMENTAL RESEARCH LETTERS | 2018年 / 13卷 / 06期
关键词
Greater Horn of Africa; CDD; CWD; CORDEX; 1.5 and 2 degrees C; INDIAN-OCEAN DIPOLE; CORDEX-AFRICA; HEAT WAVES; TEMPERATURE; PRECIPITATION; VARIABILITY; DIFFERENCE; RESPONSES; ENSEMBLE; INDEXES;
D O I
10.1088/1748-9326/aaba1b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We analyze the potential effect of global warming levels (GWLs) of 1.5 degrees C and 2 degrees C above pre-industrial levels (1861-1890) on mean temperature and precipitation as well as intra-seasonal precipitation extremes over the Greater Horn of Africa. We used a large, 25-member regional climate model ensemble from the Coordinated Regional Downscaling Experiment and show that, compared to the control period of 1971-2000, annual mean near-surface temperature is projected to increase by more than 1 degrees C and 1.5 degrees C over most parts of the Greater Horn of Africa, under GWLs of 1.5 degrees C and 2 degrees C respectively. The highest temperature increases are projected in the northern region, covering most parts of Sudan and northern parts of Ethiopia, and the lowest temperature increases are projected over the coastal belt of Tanzania. However, the projected mean surface temperature difference between 2 degrees C and 1. 5 degrees C GWLs is higher than 0.5 degrees C over nearly all land points, reaching 0.8 degrees C over Sudan and northern Ethiopia. This implies that the Greater Horn of Africa will warm faster than the global mean. While projected changes in precipitation are mostly uncertain across the Greater Horn of Africa, there is a substantial decrease over the central and northern parts of Ethiopia. Additionally, the length of dry and wet spells is projected to increase and decrease respectively. The combined effect of a reduction in rainfall and the changes in the wet and dry spells will likely impact negatively on the livelihoods of people within the coastal cities, lake regions, highlands as well as arid and semi-arid lands of Kenya, Tanzania, Somalia, Ethiopia and Sudan. The probable impacts of these changes on key sectors such as agriculture, water, energy and health sectors, will likely call for formulation of actionable policies geared towards adaptation and mitigation of the impacts of 1.5 degrees C and 2 degrees C warming.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa
    Shiferaw, Andualem
    Tadesse, Tsegaye
    Rowe, Clinton
    Oglesby, Robert
    ATMOSPHERE, 2018, 9 (03)
  • [22] Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs
    Ogega, Obed M.
    Gyampoh, Benjamin A.
    Mistry, Malcolm N.
    CLIMATE, 2020, 8 (12) : 1 - 19
  • [23] Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios
    Chevuturi, Amulya
    Klingaman, Nicholas P.
    Turner, Andrew G.
    Hannah, Shaun
    EARTHS FUTURE, 2018, 6 (03) : 339 - 358
  • [24] Extreme heat waves under 1.5 °C and 2 °C global warming
    Dosio, Alessandro
    Mentaschi, Lorenzo
    Fischer, Erich M.
    Wyser, Klaus
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (05):
  • [25] Changes in Climate Extremes in Central Asia under 1.5 and 2 °C Global Warming and their Impacts on Agricultural Productions
    Liu, Yang
    Geng, Xiu
    Hao, Zhixin
    Zheng, Jingyun
    ATMOSPHERE, 2020, 11 (10)
  • [26] Risks of temperature extremes over China under 1.5 °C and 2 °C global warming
    Shi Chen
    Jiang Zhi-Hong
    Zhu Lian-Hua
    Zhang, Xuebin
    Yao Yi-Yi
    Li, Laurent
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2020, 11 (03) : 172 - 184
  • [27] Changes in mean and extreme climate in southern South America under global warming of 1.5 °C, 2 °C, and 3 °C
    Gulizia, Carla N.
    Raggio, Gabriela A.
    Camilloni, Ines A.
    Saurral, Ramiro, I
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 150 (1-2) : 787 - 803
  • [28] Multi-Model Projection of Climate Extremes under 1.5°C-4°C Global Warming Levels across Iran
    Najafi, Mohammad Reza
    Abbasian, Mohammad
    Na, Wooyoung
    Rahimimovaghar, Melika
    Bakhtiari, Soheil
    Islam, Md Robiul
    Fereshtehpour, Mohammad
    Pirani, Farshad Jalili
    Rezvani, Reza
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2025, 45 (04)
  • [29] Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C
    You, Qinglong
    Wu, Fangying
    Shen, Liucheng
    Pepin, Nick
    Jiang, Zhihong
    Kang, Shichang
    GLOBAL AND PLANETARY CHANGE, 2020, 192 (192)
  • [30] Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia
    Zhang, Meng
    Yu, Haipeng
    King, Andrew D.
    Wei, Yun
    Huang, Jianping
    Ren, Yu
    CLIMATIC CHANGE, 2020, 162 (02) : 603 - 619