NONLINEAR DIRAC EQUATIONS WITH APPLICATIONS TO NEUTRINO OSCILLATIONS

被引:2
作者
Ng, Wei Khim [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2009年 / 24卷 / 18-19期
关键词
Quantum nonlinearity; Lorentz violation; nonlinear Dirac equations; neutrino oscillations; VIOLATION;
D O I
10.1142/S0217751X09047089
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We first review a method to generate nonlinear Dirac equations. The method demands the nonlinear extensions preserve several physical properties like locality, Hermiticity, Poincare invariance and separability. The last constraint results in nonlinear extensions of non-polynomial type. A class of nonlinear extensions that simultaneously violate Lorentz invariance is also constructed. We then review, using the classes of nonlinear extensions with or without violation of Lorentz symmetry, the sub-leading modi. cations to the neutrino oscillation probabilities in the nu(mu)-nu(tau) sector. The parameters in our models are bounded using the current experimental data. These are then used to estimate corrections to the oscillation probabilities and the corresponding energies at which the corrections will be sizeable. Thus one may test quantum nonlinearities in future higher energy experiments.
引用
收藏
页码:3476 / 3482
页数:7
相关论文
共 50 条
  • [21] Neutrino masses and oscillations
    Valle, JWF
    PARTICLES, STRINGS, AND COSMOLOGY, 2005, 805 : 128 - 134
  • [22] Introduction to neutrino oscillations
    Cabral-Rosetti, LG
    REVISTA MEXICANA DE FISICA, 2002, 48 (04) : 366 - 383
  • [23] Phenomenology of neutrino oscillations
    Rajasekaran, G
    PRAMANA-JOURNAL OF PHYSICS, 2000, 55 (1-2): : 19 - 32
  • [24] A combined treatment of neutrino decay and neutrino oscillations
    Lindner, M
    Ohlsson, T
    Winter, W
    NUCLEAR PHYSICS B, 2001, 607 (1-2) : 326 - 354
  • [25] Flavor Mixing, Neutrino Masses and Neutrino Oscillations
    Fritzsch, H.
    ADVANCES IN THEORETICAL PHYSICS, 2009, 1134 : 187 - 189
  • [26] Neutrino energy reconstruction problems and neutrino oscillations
    Martini, M.
    Ericson, M.
    11TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2012), 2013, 1560 : 220 - 222
  • [27] New Physics in ΔL=2 neutrino oscillations
    Delepine, David
    Gonzalez Macias, Vannia
    Khalil, Shaaban
    Lopez Castro, Gabriel
    XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS, 2011, 287
  • [28] SELF-SIMILAR SOLUTIONS TO NONLINEAR DIRAC EQUATIONS AND AN APPLICATION TO NONUNIQUENESS
    Huh, Hyungjin
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (01): : 53 - 60
  • [29] Existence of solutions for nonlinear Dirac equations in the Bopp-Podolsky electrodynamics
    Missaoui, Hlel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 236
  • [30] Infinitely many localized semiclassical states for critical nonlinear Dirac equations
    Chen, Shaowei
    Gou, Tianxiang
    NONLINEARITY, 2021, 34 (09) : 6358 - 6397