Concept Drift Detection using Supervised Bivariate Grids

被引:0
|
作者
Salperwyck, Christophe [1 ]
Boulle, Marc [2 ]
Lemaire, Vincent [2 ]
机构
[1] EDF R&D, 1 Ave Gen Gaulle, F-92140 Clamart, France
[2] Orange Labs, F-22300 Lannion, France
来源
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2015年
关键词
BAYES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an on-line method for concept change detection on labeled data streams. Our detection method uses a bivariate supervised criterion to determine if the data in two windows come from the same distribution. Our method has no assumption neither on data distribution nor on change type. It has the ability to detect changes of different kinds (mean, variance ... ). Experiments show that our method performs better than well-known methods from the literature. Additionally, except from the window sizes, no user parameter is required in our method.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Concept drift detection based on anomaly analysis
    Liu, Anjin
    Zhang, Guangquan
    Lu, Jie
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8834 : 263 - 270
  • [42] Customs Fraud Detection in the Presence of Concept Drift
    Mai, Tung-Duong
    Hoang, Kien
    Baigutanova, Aitolkyn
    Alina, Gaukhartas
    Kim, Sundong
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 370 - 379
  • [43] Survey of Concept Drift Detection and Adaptation Methods
    Meng, Fanxing
    Han, Meng
    Li, Chunpeng
    Zhang, Ruihua
    He, Feifei
    Computer Engineering and Applications, 2024, 60 (04) : 75 - 88
  • [44] A Comparison of Techniques for Virtual Concept Drift Detection
    Gonzalez, Manuel L.
    Sedano, Javier
    Garcia-Vico, Angel M.
    Villar, Jose R.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 3 - 13
  • [45] CURIE: a cellular automaton for concept drift detection
    Lobo, Jesus L.
    Del Ser, Javier
    Osaba, Eneko
    Bifet, Albert
    Herrera, Francisco
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (06) : 2655 - 2678
  • [46] Concept Drift Detection Based on Typicality and Eccentricity
    Nunes, Yuri Thomas P.
    Guedes, Luiz Affonso
    IEEE ACCESS, 2024, 12 : 13795 - 13808
  • [47] Enhancing Concept Drift Detection with Simulated Recurrence
    Sobolewski, Piotr
    Wozniak, Michat
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, 2013, 185 : 153 - 162
  • [48] Multistream Regression with Asynchronous Concept Drift Detection
    Dong, Bo
    Li, Yifan
    Gao, Yang
    Haque, Ahsanul
    Khan, Latifur
    Masud, Mohammad M.
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 596 - 605
  • [49] Concept Drift Detection for Evolving Stream Data
    Lee, Jeonghoon
    Lee, Yoon-Joon
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (11) : 2288 - 2292
  • [50] Concept Drift Detection via Boundary Shrinking
    Okawa, Yoshihiro
    Kobayashi, Kenichi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,