Concept Drift Detection using Supervised Bivariate Grids

被引:0
|
作者
Salperwyck, Christophe [1 ]
Boulle, Marc [2 ]
Lemaire, Vincent [2 ]
机构
[1] EDF R&D, 1 Ave Gen Gaulle, F-92140 Clamart, France
[2] Orange Labs, F-22300 Lannion, France
来源
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2015年
关键词
BAYES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an on-line method for concept change detection on labeled data streams. Our detection method uses a bivariate supervised criterion to determine if the data in two windows come from the same distribution. Our method has no assumption neither on data distribution nor on change type. It has the ability to detect changes of different kinds (mean, variance ... ). Experiments show that our method performs better than well-known methods from the literature. Additionally, except from the window sizes, no user parameter is required in our method.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SACCOS: A Semi-Supervised Framework for Emerging Class Detection and Concept Drift Adaption Over Data Streams
    Gao, Yang
    Chandra, Swarup
    Li, Yifan
    Khan, Latifur
    Bhavani, Thuraisingham
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1416 - 1426
  • [32] Twitter spam drift detection by semi supervised learning approach using YATSI algorithm
    Sivakumar, P.
    Balasubramani, M.
    Sowndharya, R.
    Priya, B. S. Deepa
    Priya, W. Deva
    Syamala, Maganti
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024,
  • [33] Online Anomaly Detection with Concept Drift Adaptation using Recurrent Neural Networks
    Saurav, Sakti
    Malhotra, Pankaj
    Tv, Vishnu
    Gugulothu, Narendhar
    Vig, Lovekesh
    Agarwal, Puneet
    Shroff, Gautam
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 78 - 87
  • [34] Android malware concept drift using system calls: Detection, characterization and challenges
    Guerra-Manzanares, Alejandro
    Luckner, Marcin
    Bahsi, Hayretdin
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [35] FeSAD ransomware detection framework with machine learning using adaption to concept drift
    Fernando, Damien Warren
    Komninos, Nikos
    COMPUTERS & SECURITY, 2024, 137
  • [36] WinDrift: Early Detection of Concept Drift Using Corresponding and Hierarchical Time Windows
    Naqvi, Naureen
    Rehman, Sabih Ur
    Islam, Md Zahidul
    DATA MINING, AUSDM 2022, 2022, 1741 : 73 - 89
  • [37] Concept Drift Detection in Streams of Labelled Data Using the Restricted Boltzmann Machine
    Jaworski, Maciej
    Duda, Piotr
    Rutkowski, Leszek
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [38] A novel concept drift detection method in data streams using ensemble classifiers
    Dehghan, Mahdie
    Beigy, Hamid
    ZareMoodi, Poorya
    INTELLIGENT DATA ANALYSIS, 2016, 20 (06) : 1329 - 1350
  • [39] An Experimental Study of the Concept Drift Challenge in Farm Intrusion Detection using Audio
    Bhatt, Ruchi
    Singh, Simrandeep
    Choudhary, Priyankar
    Saini, Mukesh
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [40] An Experimental Evaluation of Process Concept Drift Detection
    Adams, Jan Niklas
    Pitsch, Cameron
    Brockhoff, Tobias
    van der Aalst, Wil M. P.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (08): : 1856 - 1869