Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells

被引:35
|
作者
Yang, Kee-Jeong [1 ]
Sim, Jun-Hyoung [1 ]
Son, Dae-Ho [1 ]
Kim, Young-Ill [1 ]
Kim, Dae-Hwan [1 ]
Nam, Dahyun [2 ]
Cheong, Hyeonsik [2 ]
Kim, SeongYeon [3 ]
Kim, JunHo [3 ]
Kang, Jin-Kyu [1 ]
机构
[1] DGIST, Convergence Res Ctr Solar Energy, Daegu 42988, South Korea
[2] Sogang Univ, Dept Phys, Seoul 04107, South Korea
[3] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
基金
新加坡国家研究基金会;
关键词
Thin-film solar cell; CZTSSe; Multi-stacked precursor; Defect; Secondary phase; CU2ZNSNS4; FILMS; PHASE-FORMATION; SULFUR-CONTENT; GROWTH; EFFICIENCY; SULFURIZATION; PERFORMANCE; INTERFACE; ABSORBERS; IMPACT;
D O I
10.1016/j.nanoen.2017.03.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To commercialize Cu2ZnSn(S,Se)(4) (CZTSSe) thin-film solar cells, it is necessary to improve their efficiency and to develop the technological ability to produce large-area modules. Defect formation due to the secondary phase is considered to be one of the main reasons for decreased CZTSSe thin-film solar-cell efficiency. This study explores the potential capabilities of large-area thin-film solar cells by controlling the defect formation using various CZTSSe precursor designs, and by improving the characteristic uniformity within the thin-film solar cells. Alloying the precursor as a stack of discrete layers can result in lateral segregation of elements into stable-phase islands, yielding a non-uniform composition on small length scales. It is found that the application of an indiscrete layer by minimizing the precursor-layer thickness allows avoiding Zn rich inhomogeneities in the absorber that would favor formation of detrimental ZnS-ZnSe secondary phases and deep defects. Among the various precursor layers designed by considering the reaction mechanism under annealing, a sample with 15 precursor layers is found to exhibit a shallow electron-acceptor energy level, high photovoltaic conversion efficiency, and uniform characteristics over the corresponding thin-film solar cell. Based on such improvements in both the efficiency and characteristic distribution, it is expected that the commercialization of CZTSSe thin-film solar cells can be advanced.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [31] The Degradation of Cu2ZnSn(S,Se)4 Kesterite Thin Film Solar Cells Induced by Proton Radiation
    Zhao, Yun
    Bai, Qianqian
    Chai, Liqiang
    Dong, Xiaofei
    Chen, Jiangtao
    Chen, Jianbiao
    Li, Yan
    Han, Xiuxun
    ADVANCED MATERIALS INTERFACES, 2022, 9 (26)
  • [32] Beyond 11% efficient Cu2ZnSn(Se,S)4 thin film solar cells by cadmium alloying
    Sun, Rujun
    Zhuang, Daming
    Zhao, Ming
    Gong, Qianming
    Scarpulla, Mike
    Wei, Yaowei
    Ren, Guoan
    Wu, Yixuan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 : 494 - 498
  • [33] Impact of sequential annealing step on the performance of Cu2ZnSn(S,Se)4 thin film solar cells
    Li, Chunran
    Yao, Bin
    Li, Yongfeng
    Ding, Zhanhui
    Zhao, Haifeng
    Zhang, Ligong
    Zhang, Zhenzhong
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 95 : 149 - 158
  • [34] Research Progress of Metal(I) Substitution in Cu2ZnSn(S,Se)4 Thin Film Solar Cells
    Zhou, Jiazheng
    Xu, Xiao
    Duan, Biwen
    Shi, Jiangjian
    Luo, Yanhong
    Wu, Huijue
    Li, Dongmei
    Meng, Qingbo
    ACTA CHIMICA SINICA, 2021, 79 (03) : 303 - 318
  • [35] Preparation and characterization of Cu2ZnSn(S,Se)4 thin film as photovoltaic absorber material for solar cells
    Wang, Chaozheng
    Zhu, Chengjun
    Zhang, Tianwei
    MATERIALS LETTERS, 2013, 108 : 62 - 64
  • [36] Fabrication of Cu2ZnSn(S,Se)4 thin film solar cells by selenization of reactively sputtered precursors
    Lai, Yanqing
    Zhao, Lianbo
    Gao, Chunhui
    Kang, Liangliang
    Yan, Chang
    Jiang, Liangxing
    Liu, Fangyang
    MATERIALS LETTERS, 2016, 182 : 336 - 339
  • [37] Fabrication of Cu2ZnSn(S, Se)4 thin-film solar cells by sulfurization using Cu2ZnSnSe4, NaF and KF compounds
    Yamaguchi, Toshiyuki
    Ogawa, Hiroya
    Nakashima, Mitsuki
    Naoi, Hiroyuki
    Araki, Hideaki
    Jimbo, Kazuo
    Katagiri, Hironori
    Sasano, Junji
    Izaki, Masanobu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SG)
  • [38] Over 10% efficient Cu2ZnSn(S, Se)4 Thin-Film cells prepared by aluminium doping
    Yu, Na
    Su, Xu
    Li, Qiulian
    Zhou, Zhineng
    Chen, Yufei
    Song, Qiaogang
    Wang, Shurong
    SOLAR ENERGY, 2024, 280
  • [39] Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source
    Jing Guo
    Yingli Pei
    Zhengji Zhou
    Wenhui Zhou
    Dongxing Kou
    Sixin Wu
    Nanoscale Research Letters, 2015, 10
  • [40] Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source
    Guo, Jing
    Pei, Yingli
    Zhou, Zhengji
    Zhou, Wenhui
    Kou, Dongxing
    Wu, Sixin
    NANOSCALE RESEARCH LETTERS, 2015, 10