Wave equations & energy

被引:0
作者
Bray, William O. [1 ]
Hunter, Ellen [1 ]
机构
[1] Missouri State Univ, Dept Math, 901 S Natl, Springfield, MO 65897 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 03期
关键词
wave equation; Sturm-Liouville problem; Sobolev space; energy conservation; energy equipartition;
D O I
10.3934/math.2019.3.463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this work is apply Fourier analytic methods based on Parseval's equality to the computation of kinetic and potential energy of solutions of initial boundary value problems for general wave type equations on a finite interval. As a consequence, an energy equipartion principle for the solution is obtained. Within our methods are some new results regarding eigenfunction expansions arising from regular Sturm-Liouville problems in Sobolev spaces.
引用
收藏
页码:463 / 481
页数:19
相关论文
共 50 条
[41]   On uniqueness for semilinear wave equations [J].
Fabrice Planchon .
Mathematische Zeitschrift, 2003, 244 :587-599
[42]   On Blowup in Supercritical Wave Equations [J].
Roland Donninger ;
Birgit Schörkhuber .
Communications in Mathematical Physics, 2016, 346 :907-943
[43]   Fractional wave equations with attenuation [J].
Straka, Peter ;
Meerschaert, Mark M. ;
McGough, Robert J. ;
Zhou, Yuzhen .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) :262-272
[44]   Dispersive estimates for wave equations [J].
Tataru, D ;
Geba, DA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) :849-880
[45]   On a system of nonlinear wave equations [J].
Li, MR ;
Tsai, LY .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (04) :557-573
[46]   Wave equations in Riemannian spaces [J].
X. S. Mamaeva ;
N. N. Trunov .
Theoretical and Mathematical Physics, 2003, 135 (1) :520-530
[47]   Fractional wave equations with attenuation [J].
Peter Straka ;
Mark M. Meerschaert ;
Robert J. McGough ;
Yuzhen Zhou .
Fractional Calculus and Applied Analysis, 2013, 16 :262-272
[48]   Two linear energy-preserving compact finite difference schemes for coupled nonlinear wave equations [J].
Hou, Baohui ;
Liu, Huan .
APPLIED NUMERICAL MATHEMATICS, 2024, 201 :531-549
[49]   The energy-preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions [J].
Deng, Dingwen ;
Liang, Dong .
APPLIED NUMERICAL MATHEMATICS, 2020, 151 :172-198
[50]   Exact Traveling-Wave Solutions to Bidirectional Wave Equations [J].
Min Chen .
International Journal of Theoretical Physics, 1998, 37 :1547-1567