Wave equations & energy

被引:0
作者
Bray, William O. [1 ]
Hunter, Ellen [1 ]
机构
[1] Missouri State Univ, Dept Math, 901 S Natl, Springfield, MO 65897 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 03期
关键词
wave equation; Sturm-Liouville problem; Sobolev space; energy conservation; energy equipartition;
D O I
10.3934/math.2019.3.463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this work is apply Fourier analytic methods based on Parseval's equality to the computation of kinetic and potential energy of solutions of initial boundary value problems for general wave type equations on a finite interval. As a consequence, an energy equipartion principle for the solution is obtained. Within our methods are some new results regarding eigenfunction expansions arising from regular Sturm-Liouville problems in Sobolev spaces.
引用
收藏
页码:463 / 481
页数:19
相关论文
共 50 条
[31]   Chaotic oscillations of one-dimensional coupled wave equations with mixed energy transports [J].
Wang, Fei ;
Wang, Jun-Min .
NONLINEAR DYNAMICS, 2020, 99 (03) :2277-2290
[32]   Chaotic oscillations of one-dimensional coupled wave equations with mixed energy transports [J].
Fei Wang ;
Jun-Min Wang .
Nonlinear Dynamics, 2020, 99 :2277-2290
[33]   NONLINEAR WAVE EQUATIONS AND REACTION-DIFFUSION EQUATIONS WITH SEVERAL NONLINEAR SOURCE TERMS OF DIFFERENT SIGNS AT HIGH ENERGY LEVEL [J].
Xu, Runzhang ;
Yang, Yanbing ;
Chen, Shaohua ;
Su, Jia ;
Shen, Jihong ;
Huang, Shaobin .
ANZIAM JOURNAL, 2013, 54 (03) :153-170
[34]   An energy-conserving finite element method for nonlinear fourth-order wave equations [J].
He, Mingyan ;
Tian, Jia ;
Sun, Pengtao ;
Zhang, Zhengfang .
APPLIED NUMERICAL MATHEMATICS, 2023, 183 :333-354
[35]   New Energy Inequalities for Tensorial Wave Equations on Spacetimes that Satisfy a One-Sided Bound [J].
Burtscher, Annegret Y. ;
Grant, James D. E. ;
LeFloch, Philippe G. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (09) :1596-1619
[36]   Local energy decay for linear wave equations with non-compactly supported initial data [J].
Ikehata, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (16) :1881-1892
[37]   Fast energy decay for wave equations with a localized damping in the n-D half space [J].
Ikehata, Ryo .
ASYMPTOTIC ANALYSIS, 2017, 103 (1-2) :77-94
[38]   On wave equations with supercritical nonlinearities [J].
P. Brenner ;
P. Kumlin .
Archiv der Mathematik, 2000, 74 :129-147
[39]   Wave equations in Riemannian spaces [J].
Mamaeva, XS ;
Trunov, NN .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (01) :520-530
[40]   Wave equations in conformal gravity [J].
Du, Juan-Juan ;
Wang, Xue-Jing ;
He, You-Biao ;
Yang, Si-Jiang ;
Li, Zhong-Heng .
MODERN PHYSICS LETTERS A, 2018, 33 (16)