Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets

被引:39
|
作者
Viidik, Laura [1 ]
Vesala, Jemina [2 ]
Laitinen, Riikka [2 ]
Korhonen, Ossi [2 ]
Ketolainen, Jarkko [2 ]
Aruva, Jaan [3 ]
Kirsimae, Kalle [3 ]
Kogermann, Karin [1 ]
Heinamaki, Jyrki [1 ]
Laidmae, Ivo [1 ,4 ]
Ervasti, Tuomas [2 ]
机构
[1] Univ Tartu, Inst Pharm, Fac Med, Tartu, Estonia
[2] Univ Eastern Finland, Sch Pharm, PromisLab, Kuopio, Finland
[3] Univ Tartu, Fac Sci & Technol, Inst Ecol & Earth Sci, Dept Geol, Tartu, Estonia
[4] Univ Tartu, Fac Med, Inst Biomed & Translat Med, Dept Immunol, Tartu, Estonia
关键词
3D-printing; hot-melt extrusion; filament; polycaprolactone; arabic gum; drug release; fused deposition modelling; SOLID-STATE PLASTICIZER; PROCESS PARAMETERS; DRUG-RELEASE; 3D; POLYMERS; BEHAVIOR; ACID;
D O I
10.1016/j.ejps.2020.105619
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Hot-melt extruded (HME) filaments are an essential intermediate product for the threedimensional (3D) printing of drug delivery systems (DDSs) by the fused deposition modelling (FDM) process. The aim of this study was to design novel polymeric 3D-printable HME filaments loaded with active pharmaceutical ingredients (APIs). The physical solid-state properties, mechanical properties, drug release and short-term storage stability of the filaments and 3D-printed DDSs were studied. Physical powder mixtures of polycaprolactone (PCL), plasticizer and API were manually blended, extruded by a single-screw extruder, and printed by a table-top FDM 3D-printing system. The composition of PCL and arabic gum (ARA) enabled the incorporation of 20%, 30% and 40% (w/ w) of indomethacin (IND) and theophylline (THEO) into the HME filaments. The uneven distribution of API throughout the filaments impaired 3D printing. The HME filaments loaded with 20% IND or THEO were selected for the further analysis and printing tests (the ratio of PCL, ARA and IND or THEO was 7:1:2, respectively). The IND filaments were yellowish, mechanically strong and flexible, and they had a uniform filament diameter and smooth outer surface. The filaments containing THEO were smooth and off-white. The 3D-printed tablets fabricated from IND or THEO-loaded filaments showed sustained drug release in vitro. The drug release rate, however, significantly increased by changing the geometry of 3D-printed tablets from a conventional tablet structure to an unorthodox lattice ("honeycomb") structure. Overall, the combination of PCL and ARA provides an interesting novel polymeric carrier system for 3D-printable HME filaments and tablets.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Hot-Melt Extrusion–Based Fused Deposition Modeling 3D Printing of Atorvastatin Calcium Tablets: Impact of Shape and Infill Density on Printability and Performance
    Preethi Mandati
    Nagireddy Dumpa
    Abdullah Alzahrani
    Dinesh Nyavanandi
    Sagar Narala
    Honghe Wang
    Suresh Bandari
    Michael A. Repka
    Sandip Tiwari
    Nigel Langley
    AAPS PharmSciTech, 24
  • [22] Tough, Resorbable Polycaprolactone-Based Bimodal Networks for Vat Polymerization 3D Printing
    Samson, Kerr D. G.
    Hidalgo-Alvarez, Veronica
    Dargaville, Tim R.
    Melchels, Ferry P. W.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (25)
  • [23] Impact of Drug Loading Method on Drug Release from 3D-Printed Tablets Made from Filaments Fabricated by Hot-Melt Extrusion and Impregnation Processes
    Thanawuth, Kasitpong
    Sutthapitaksakul, Lalinthip
    Konthong, Srisuda
    Suttiruengwong, Supakij
    Huanbutta, Kampanart
    Dass, Crispin R.
    Sriamornsak, Pornsak
    PHARMACEUTICS, 2021, 13 (10)
  • [24] Blueberry-Inspired Structurally Colored PLA Granules Induced by Mie Scattering for Hot-Melt Extrusion of 3D Printing Filaments
    Meng, Rou
    Liu, Tianyi
    Wu, Suli
    ACS APPLIED MATERIALS & INTERFACES, 2025, : 21705 - 21712
  • [25] Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting
    Narala, Sagar
    Nyavanandi, Dinesh
    Mandati, Preethi
    Youssef, Ahmed Adel Ali
    Alzahrani, Abdullah
    Kolimi, Praveen
    Zhang, Feng
    Repka, Michael
    INTERNATIONAL JOURNAL OF PHARMACEUTICS-X, 2023, 5
  • [26] Development of Subdermal Implants Using Direct Powder Extrusion 3D Printing and Hot-Melt Extrusion Technologies
    Muhindo, Derick
    Ashour, Eman A.
    Almutairi, Mashan
    Repka, Michael A.
    AAPS PHARMSCITECH, 2023, 24 (08)
  • [27] Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing
    Prasad, Elke
    Islam, Muhammad T.
    Goodwin, Daniel J.
    Megarry, Andrew J.
    Halbert, Gavin W.
    Florence, Alastair J.
    Robertson, John
    ADDITIVE MANUFACTURING, 2019, 29
  • [28] Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery
    Tan, Deck Khong
    Maniruzzaman, Mohammed
    Nokhodchi, Ali
    PHARMACEUTICS, 2018, 10 (04):
  • [29] Hot-Melt Extrusion Process Fluctuations and Their Impact on Critical Quality Attributes of Filaments and 3D-Printed Dosage Forms
    Ponsar, Hanna
    Wiedey, Raphael
    Quodbach, Julian
    PHARMACEUTICS, 2020, 12 (06) : 1 - 15
  • [30] Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel
    Kavimughil, M.
    Leena, M. Maria
    Moses, J. A.
    Anandharamakrishnan, C.
    JOURNAL OF FOOD ENGINEERING, 2022, 329