Stability testing for systems with polynomial uncertainty

被引:0
作者
Fadali, MS [1 ]
机构
[1] Univ Nevada, Dept Elect Engn, Reno, NV 89557 USA
来源
PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2002年 / 1-6卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a new stability tests for systems with one uncertain parameter and with polynomial uncertainty structure. The test is derived using the resultant determinant for the real and imaginary parts of the polynomial evaluated on the imaginary axis. The resultant determinant is a function of the uncertain parameter as well as frequency. We evaluate the determinant using a known algorithm then test it for roots in a given interval using Sturm's theorem. We apply Sturm's test twice: over the allowable range of the uncertain parameter, and for positive angular frequencies. The procedure yields a necessary and sufficient stability condition with polynomial uncertainty structure and one uncertain parameter. We demonstrate the new test using two numerical examples.
引用
收藏
页码:3896 / 3901
页数:6
相关论文
共 50 条
[31]   Polynomial Chaos based Uncertainty Quantification in Hamiltonian and Chaotic Systems [J].
Pasini, Jose Miguel ;
Sahai, Tuhin .
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, :1113-1118
[32]   UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION [J].
Sepahvand, K. ;
Marburg, S. ;
Hardtke, H. -J. .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) :305-353
[33]   Efficient polynomial chaos expansion for uncertainty quantification in power systems [J].
Metivier, David ;
Vuffray, Marc ;
Misra, Sidhant .
ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
[34]   Piecewise Polynomial Lyapunov Functions Based Stability Analysis for Polynomial Fuzzy Systems [J].
Chen, Ying-Jen ;
Tanaka, Motoyasu ;
Tanaka, Kazuo ;
Wang, Hua O. .
2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, :34-+
[35]   Directional stability radius - A stability analysis tool for uncertain polynomial systems [J].
Kawabata, K ;
Mori, T ;
Kuroe, Y .
SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, :662-666
[36]   Directional stability radius: A stability analysis tool for uncertain polynomial systems [J].
Kawabata, K ;
Mori, T ;
Kuroe, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :1012-1016
[37]   Stability analysis of stochastic systems using polynomial chaos [J].
Fisher, James ;
Bhattacharya, Raktim. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :4250-4255
[38]   A stability sufficient condition for cubic polynomial dynamic systems [J].
Krasovskii, AA .
DOKLADY AKADEMII NAUK, 1995, 344 (05) :605-606
[39]   Nonlinear stability analysis for non-polynomial systems [J].
Mastellone, S ;
Hokayem, R ;
Abdallah, CT ;
Dorato, P .
PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, :1725-1730
[40]   Finite-Time Stability and Stabilization of Polynomial Systems [J].
Tartaglione, Gaetano ;
Ariola, Marco ;
Amato, Francesco .
2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, :1371-1376