Stability testing for systems with polynomial uncertainty

被引:0
作者
Fadali, MS [1 ]
机构
[1] Univ Nevada, Dept Elect Engn, Reno, NV 89557 USA
来源
PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2002年 / 1-6卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a new stability tests for systems with one uncertain parameter and with polynomial uncertainty structure. The test is derived using the resultant determinant for the real and imaginary parts of the polynomial evaluated on the imaginary axis. The resultant determinant is a function of the uncertain parameter as well as frequency. We evaluate the determinant using a known algorithm then test it for roots in a given interval using Sturm's theorem. We apply Sturm's test twice: over the allowable range of the uncertain parameter, and for positive angular frequencies. The procedure yields a necessary and sufficient stability condition with polynomial uncertainty structure and one uncertain parameter. We demonstrate the new test using two numerical examples.
引用
收藏
页码:3896 / 3901
页数:6
相关论文
共 50 条
[21]   A unifying framework to uncertainty quantification of polynomial systems subject to aleatory and epistemic uncertainty [J].
Crespo, Luis G. ;
Giesy, Daniel P. ;
Kenny, Sean P. .
Reliable Computing, 2012, 17 :97-127
[22]   Stability Region Analysis for Polynomial Fuzzy Systems by Polynomial Lyapunov Functions [J].
Chen, Ying-Jen ;
Tanaka, Motoyasu ;
Tanaka, Kazuo ;
Wang, Hua O. .
2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, :2091-2095
[23]   A polynomial approach for stability analysis of switched systems [J].
Mojica-Nava, E. ;
Quijano, N. ;
Rakoto-Ravalontsalama, N. ;
Gauthier, A. .
SYSTEMS & CONTROL LETTERS, 2010, 59 (02) :98-104
[24]   STABILITY OF CERTAIN CLASSES OF SOLUTIONS OF POLYNOMIAL SYSTEMS [J].
BEKLEMISHEVA, LA .
DIFFERENTIAL EQUATIONS, 1984, 20 (08) :957-965
[25]   STABILITY OF A MATRIX POLYNOMIAL IN DISCRETE-SYSTEMS [J].
AHN, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (05) :1122-1124
[26]   Regional stability analysis of implicit polynomial systems [J].
Coutinho, Daniel E. ;
De Souza, Carlos E. ;
Trofino, Alexandre .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :4228-+
[27]   On quadratic stability of systems with structured uncertainty [J].
Yan, WY ;
Lam, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) :1799-1805
[28]   On the stability of nonlinear control systems with uncertainty [J].
Hammami M.A. .
Journal of Dynamical and Control Systems, 2001, 7 (2) :171-179
[29]   ON THE DEGREE OF POLYNOMIAL IN THE UNCERTAINTY VALID LYAPUNOV FUNCTIONS FOR POLYTOPIC SYSTEMS [J].
Savov, Svetoslav ;
Popchev, Ivan .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (10) :1335-1338
[30]   Efficient uncertainty quantification with the polynomial chaos method for stiff systems [J].
Cheng, Haiyan ;
Sandu, Adrian .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (11) :3278-3295