Stability testing for systems with polynomial uncertainty

被引:0
作者
Fadali, MS [1 ]
机构
[1] Univ Nevada, Dept Elect Engn, Reno, NV 89557 USA
来源
PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2002年 / 1-6卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a new stability tests for systems with one uncertain parameter and with polynomial uncertainty structure. The test is derived using the resultant determinant for the real and imaginary parts of the polynomial evaluated on the imaginary axis. The resultant determinant is a function of the uncertain parameter as well as frequency. We evaluate the determinant using a known algorithm then test it for roots in a given interval using Sturm's theorem. We apply Sturm's test twice: over the allowable range of the uncertain parameter, and for positive angular frequencies. The procedure yields a necessary and sufficient stability condition with polynomial uncertainty structure and one uncertain parameter. We demonstrate the new test using two numerical examples.
引用
收藏
页码:3896 / 3901
页数:6
相关论文
共 13 条
[1]  
Ackermann J., 1993, Robust Control: Systems with Uncertain Physical Parameters
[2]   EASILY TESTABLE SUFFICIENT CONDITIONS FOR THE ROBUST STABILITY OF SYSTEMS WITH MULTILINEAR PARAMETER DEPENDENCE [J].
ANDERSON, BDO ;
KRAUS, F ;
MANSOUR, M ;
DASGUPTA, S .
AUTOMATICA, 1995, 31 (01) :25-40
[3]  
[Anonymous], 1963, LINEAR SYSTEM THEORY
[4]  
Barmish B.R., 1994, New Tools for Robustness of Linear Systems
[5]  
Belanger PR., 1995, CONTROL ENG MODERN A
[6]  
Bialas S., 1985, B POLISH ACAD SCI, V33, P473
[7]   A note on convex combinations of polynomials [J].
Blondel, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (11) :1690-1691
[8]   FAST STABILITY CHECKING FOR THE CONVEX COMBINATION OF STABLE POLYNOMIALS [J].
BOUGUERRA, H ;
CHANG, BC ;
YEH, HH ;
BANDA, SS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (05) :586-588
[9]  
BUSLOWICZ M, 1980, INT J CONTROL, V33, P977
[10]   Minkowski geometric algebra of complex sets [J].
Farouki, RT ;
Moon, HP ;
Ravani, B .
GEOMETRIAE DEDICATA, 2001, 85 (1-3) :283-315