Synchronization of fractional-order gene regulatory network with delay

被引:0
作者
Feng Liu [1 ,2 ]
Zhe Zhang [1 ]
Ren Jie [1 ]
Sun Fenglan [3 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Res Ctr Syst Theory & Applicat, Chongqing 400065, Peoples R China
来源
PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017) | 2017年
关键词
Fractional-order; synchronization; adaptive projection control; adaptive sliding mode control; NEURAL-NETWORKS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of Synchronous Control of Fractional gene regulatory networks. Based on the Lyapunov stability judgment method, we apply two kinds of control method, adaptive projection control and adaptive sliding mode control, for making system synchronous. Finally, a numerical simulation example is provided to verify the effectiveness and the benefit of the proposed synchronicity criterion.
引用
收藏
页码:11331 / 11334
页数:4
相关论文
共 10 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks [J].
Chen, Diyi ;
Zhang, Runfan ;
Liu, Xinzhi ;
Ma, Xiaoyi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) :4105-4121
[3]   A gene regulatory network model for cell-fate determination during Arabidopsis thalianal flower development that is robust and recovers experimental gene expression profiles [J].
Espinosa-soto, C ;
Padilla-Longoria, P ;
Alvarez-Buylla, ER .
PLANT CELL, 2004, 16 (11) :2923-2939
[4]   Chaos and hyperchaos in fractional-order cellular neural networks [J].
Huang, Xia ;
Zhao, Zhao ;
Wang, Zhen ;
Li, Yuxia .
NEUROCOMPUTING, 2012, 94 :13-21
[5]   Nonlinear dynamics and chaos in fractional-order neural networks [J].
Kaslik, Eva ;
Sivasundaram, Seenith .
NEURAL NETWORKS, 2012, 32 :245-256
[6]   Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1810-1821
[7]   Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system [J].
Liu, Ling ;
Liang, Deliang ;
Liu, Chongxin .
NONLINEAR DYNAMICS, 2012, 69 (04) :1929-1939
[8]   Chaos in the fractional-order complex Lorenz system and its synchronization [J].
Luo, Chao ;
Wang, Xingyuan .
NONLINEAR DYNAMICS, 2013, 71 (1-2) :241-257
[9]   Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers [J].
Wu, Jianshe ;
Jiao, Licheng .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (8-9) :2111-2119
[10]   Design of adaptive sliding mode controller for chaos synchronization with uncertainties [J].
Yau, HT .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :341-347