Global stability of an innovation diffusion model for n products

被引:19
作者
Yu, Yumei [1 ]
Wang, Wendi
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] SW Univ, Dept Math, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
global stability; innovation; diffusion; competition;
D O I
10.1016/j.aml.2005.11.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An innovation diffusion model is extended to n competing products. The globally asymptotic stability of the system is proved by constructing a Lyapunov function. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1198 / 1201
页数:4
相关论文
共 50 条
[21]   Global stability and periodic orbits for a two-patch diffusion predator-prey model with time delays [J].
Zhu, HL ;
Duan, KC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (7-8) :1083-1096
[22]   A knowledge exchange and diffusion of innovation (KEDI) model for primary production [J].
Manning, Louise .
BRITISH FOOD JOURNAL, 2013, 115 (04) :614-631
[23]   Innovation diffusion model in patch environment [J].
Wendi, W ;
Fergola, P ;
Tenneriello, C .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (01) :51-67
[24]   Stability and Hopf Bifurcation Analysis of a Delayed Innovation Diffusion Model with Intra-Specific Competition [J].
Kumar, Rakesh ;
Sharma, Anuj Kumar .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (14)
[25]   Global Stability of the Endemic Equilibrium of a Stochastic Information Diffusion Model in Social Networks Based on Epidemic Model [J].
Yuan, Cheng-jun ;
Ji, Dong .
2018 INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL, AUTOMATION AND ROBOTICS (ECAR 2018), 2018, 307 :602-607
[26]   Global Stability of Solutions in a Reaction-Diffusion System of Predator-Prey Model [J].
Luo, Demou ;
Liu, Hailin .
FILOMAT, 2018, 32 (13) :4665-4672
[27]   A note on global stability of a degenerate diffusion avian influenza model with seasonality and spatial Heterogeneity [J].
Li, Wenjie ;
Guan, Yajuan ;
Cao, Jinde ;
Xu, Fei .
APPLIED MATHEMATICS LETTERS, 2024, 148
[28]   Global stability of a reaction-diffusion predator-prey model with a nonlocal delay [J].
Xu, Rui ;
Ma, Zhien .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (1-2) :194-206
[29]   Global and Local Processes in a Model of Innovation [J].
Villani, Marco ;
Serra, Roberto ;
Ansaloni, Luca ;
Lane, David .
CELLULAR AUTOMATA, PROCEEDINGS, 2008, 5191 :401-408
[30]   Stability analysis of an epidemic model with diffusion and stochastic perturbation [J].
Rao, Feng ;
Wang, Weiming ;
Li, Zhibin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2551-2563