On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes

被引:25
作者
Ahmed, SE
Antonini, RG
Volodin, A
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
array of Banach space valued random elements; stable type p Banach space; rowwise independence; weighted sums; complete convergence; rate of convergence; almost sure convergence; convergence in probability; moving average;
D O I
10.1016/S0167-7152(02)00126-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain complete convergence results for arrays of rowwise independent Banach space valued random elements. In the main result no assumptions are made concerning the geometry of the underlying Banach space. As corollaries we obtain a result on complete convergence in stable type p Banach spaces and on the complete convergence of moving average processes. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 14 条
[1]  
Adler A., 1999, B I MATH ACAD SINICA, V27, P187
[2]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[3]  
Gut A., 1992, Period Math Hung, V25, P51, DOI DOI 10.1007/BF02454383
[4]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[5]   STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM-VARIABLES [J].
HU, TC ;
MORICZ, F ;
TAYLOR, RL .
ACTA MATHEMATICA HUNGARICA, 1989, 54 (1-2) :153-162
[6]   On complete convergence for arrays of rowwise independent random elements in Banach spaces [J].
Hu, TC ;
Rosalsky, A ;
Szynal, D ;
Volodin, AI .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1999, 17 (06) :963-992
[7]  
HU TC, 2001, THEORY PROBAB APPL
[8]  
Kuczmaszewska A., 1994, INT J MATH MATH SCI, V17, P1, DOI [10.1155/S0161171294000013, DOI 10.1155/S0161171294000013]
[9]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[10]  
PRUITT WE, 1966, J MATH MECH, V15, P769