The initial value problem for the 1-D semilinear Schrodinger equation in Besov spaces

被引:16
作者
Muramatu, T [1 ]
Taoka, S [1 ]
机构
[1] Chuo Univ, Dept Math, Bunkyo Ku, Kasuga, Fukuoka 1128551, Japan
关键词
semilinear Schrodinger equation; Besov type norm; initial value problem;
D O I
10.2969/jmsj/1191334089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a class of Besov type spaces which is a generalization of that defined by Kenig-Ponce-Vega ([4], [5]) in their study on KdV equation and nonlinear Schrodinger equation. Using these spaces, we prove the following results: the 1-dimendional semilinear Schrodinger equation with the nonlinear term c(1)u(2) + c(2)(u) over bar (2) has a unique local-in-time solution for the initial data is an element of B-2,1(-3/4), and that with cu (u) over bar has a unique local-in-time solution for the initial data is an element of B-2,1(-1/4#). Note that B-2,1(-1/4,#) (R) superset of B-2,1(-1/4) (R) superset of H-s(R) for any s > -1/4.
引用
收藏
页码:853 / 888
页数:36
相关论文
共 8 条
[1]  
ARONSZAJN N, 1963, ANN I FOURIER GRENOB, V13, P211, DOI DOI 10.5802/AIF.147
[2]   Interaction equations for short and long dispersive waves [J].
Bekiranov, D ;
Ogawa, T ;
Ponce, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :357-388
[3]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[4]   Quadratic forms for the 1-D semilinear Schrodinger equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) :3323-3353
[5]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[6]  
MURAMATU T, 1985, INTERPOLATION SPACES, V25
[7]  
Muramatu T., 1974, Publ. RIMS Kyoto Univ., V9, P325
[8]  
NAKANISHI K, 2000, COUNTEREXAMPLE BILIN