Motor imagery electroencephalogram de-noising method based on EEMD and improved wavelet threshold

被引:0
作者
Zhang, Songjie [1 ]
Ma, Yuliang [1 ]
Zhang, Qizhong [1 ]
Gao, Yunyuan [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Intelligent Control & Robot, Hangzhou 310018, Zhejiang, Peoples R China
来源
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC) | 2018年
基金
中国国家自然科学基金;
关键词
MI EEG; de-noising; EEMD; wavelet threshold method; IMF;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to eliminate the noise mixed in Motor Imagery Electroencephalogram (MI EEG) and retain useful MI EEG information, the paper puts forward a new MI EEG de-noising method based on ensemble empirical mode decomposition (EEMD) and improved wavelet threshold method. New threshold function and threshold selection rules are introduced to the improved wavelet threshold de-noising method. Firstly, the MI EEG signal is decomposed by the EEMD. Then using the improved wavelet threshold method to de-noise the high-frequency Intrinsic Mode Function (IMF) components. Finally, the processed high frequency IMF components and low frequency IMF components arc reconstructed to get the de-noised signal. The experimental results reveal that the proposed de-noising algorithm has perspective of higher SNR and lower RMSE compared to the other methods, including the pure EEMD, the pure improved wavelet threshold method, and the improved wavelet threshold method based on EMD.
引用
收藏
页码:5589 / 5594
页数:6
相关论文
共 13 条
[1]   ICA-based EEG denoising: a comparative analysis of fifteen methods [J].
Albera, L. ;
Kachenoura, A. ;
Comon, P. ;
Karfoul, A. ;
Wendling, F. ;
Senhadji, L. ;
Merlet, I. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2012, 60 (03) :407-418
[2]  
Du Xiu-li, 2007, Journal of Beijing University of Technology, V33, P265
[3]  
HUANG Z H, 2009, MULTIRESOLUTION INF, V7, P4
[4]  
LUO Zhi-Zeng, 2014, EEG DENOISING METHOD, P403
[5]  
Luo Zhizeng, 2014, Chinese Journal of Sensors and Actuators, V27, P575, DOI 10.3969/j.issn.1004-1699.2014.05.001
[6]  
Ma Yuliang, 2014, Chinese Journal of Sensors and Actuators, V27, P1368, DOI 10.3969/j.issn.1004-1699.2014.10.012
[7]  
Shao RP, 2013, SHOCK VIB, V20, P763, DOI [10.3233/SAV-130783, 10.1155/2013/286461]
[8]  
[王姣 Wang Jiao], 2014, [石油物探, Geophysical Prospecting for Petroleum], V53, P164
[9]  
Xi Xugang, 2012, Chinese Journal of Sensors and Actuators, V25, P1488, DOI 10.3969/j.issn.1004-1699.2012.011.004
[10]  
XU WB, 2012, J LANZHOU JIAOTONG U, V31, P120