On the Caginalp system with dynamic boundary conditions and singular potentials

被引:65
作者
Cherfils, Laurence [1 ]
Miranville, Alain [2 ]
机构
[1] Univ Rochelle, LMA, F-17042 La Rochelle, France
[2] Univ Poitiers, SP2MI, F-86962 Futuroscope, Chasseneuil, France
关键词
Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor; Lojasiewicz-Simon inequality; convergence to a steady state; CAHN-HILLIARD EQUATION; LONG-TIME BEHAVIOR; PHASE-FIELD SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE; MODEL; EQUILIBRIUM; ATTRACTORS; REGULARITY;
D O I
10.1007/s10492-009-0008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in H (2), the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Lojasiewicz inequality in order to prove the convergence of solutions to steady states.
引用
收藏
页码:89 / 115
页数:27
相关论文
共 33 条
[1]   Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy [J].
Abels, Helmut ;
Wilke, Mathias .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3176-3193
[2]   Long-time convergence of solutions to a phase-field system [J].
Aizicovici, S ;
Feireisl, E ;
Issard-Roch, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) :277-287
[3]  
Aizicovici S., 2001, J. Evol. Equ, V1, P69, DOI [10.1007/PL00001365, DOI 10.1007/PL00001365]
[4]  
Bates P. W., 1992, J DYN DIFFER EQU, V4, P375
[5]  
Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173
[6]  
Brokate M., 1996, Hysteresis and phase transitions
[7]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[8]  
Cherfils L., 2007, Adv. Math. Sci. Appl, V17, P107
[9]   Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions [J].
Chill, Ralph ;
Fasangova, Eva ;
Pruess, Jan .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1448-1462
[10]   Novel surface modes in spinodal decomposition [J].
Fischer, HP ;
Maass, P ;
Dieterich, W .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :893-896