Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm

被引:147
|
作者
Lipu, Molla S. Hossain [1 ]
Hannan, Mahammad A. [2 ]
Hussain, Aini [1 ]
Saad, Mohamad H. [1 ]
Ayob, Afida [1 ]
Uddin, Mohammad Nasir [3 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[2] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Malaysia
[3] Lakehead Univ, Fac Engn, Thunder Bay, ON P7B 5E1, Canada
关键词
Electric vehicle; extreme learning machine; gravitational search algorithm; lithium-ion NMC battery; state of charge (SOC); NEURAL-NETWORK MODEL; OPEN-CIRCUIT VOLTAGE; ONLINE ESTIMATION;
D O I
10.1109/TIA.2019.2902532
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops a state-of-charge (SOC) estimation model for a lithium-ion battery using an improved extreme learning machine (ELM) algorithm. ELM is suitable for an SOC estimation since the ELM algorithm has fast estimation speed, good generalization performance, and high accuracy. However, the performance of ELM is highly dependent on training accuracy and the number of neurons in a hidden layer. Hence, a gravitational search algorithm (GSA) is applied to improve the ELM computational intelligence by searching for the optimal value hidden layer neurons. The optimal ELM-based GSA model does not require internal battery knowledge and mathematical model for an SOC estimation. The model robustness is validated at different temperatures using different electric vehicle drive cycles. The performance of the ELM-GSA model is verified with two popular neural network methods: back-propagation neural network (BPNN) and radial basis function neural network (RBFNN). The results are evaluated using different error rates and computation costs. The results demonstrate that the ELM-based GSA model offers a higher accuracy and lower SOC error rate than those of BPNN-based GSA and RBFNN-based GSA models. Furthermore, a detailed comparative study between the proposed model and existing SOC strategies is conducted, which also demonstrates the superiority of the proposed model.
引用
收藏
页码:4225 / 4234
页数:10
相关论文
共 50 条
  • [41] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [42] State-of-Charge Estimation of the Lithium-Ion Battery Using Neural Network Based on an Improved Thevenin Circuit Model
    Zhang, Haoliang
    Na, Woonki
    Kim, Jonghoon
    2018 IEEE TRANSPORTATION AND ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2018, : 342 - 346
  • [43] Noise-Immune Model Identification and State-of-Charge Estimation for Lithium-Ion Battery Using Bilinear Parameterization
    Wei, Zhongbao
    Dong, Guangzhong
    Zhang, Xinan
    Pou, Josep
    Quan, Zhongyi
    He, Hongwen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (01) : 312 - 323
  • [44] A Novel State-of-Charge Estimation Method for Lithium-Ion Battery Using GDAformer and Online Correction
    Chen, Wenhe
    Zhou, Hanting
    Mao, Ting
    Cheng, Longsheng
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (11) : 13473 - 13485
  • [45] Simulation and Implementation of State-of-Charge Estimation of Power Lithium-ion Battery Using Energy Method
    Xia, Bizhong
    Wang, Sa
    Tian, Yong
    Sun, Wei
    Xu, Zhihui
    Zheng, Weiwei
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 948 - +
  • [46] A Review of Lithium-Ion Battery State of Charge Estimation Methods Based on Machine Learning
    Zhao, Feng
    Guo, Yun
    Chen, Baoming
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (04):
  • [47] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306
  • [48] State of Charge Estimation for Lithium-ion Batteries using Extreme Learning Machine and Extended Kalman Filter
    Ren, Zhong
    Du, Changqing
    IFAC PAPERSONLINE, 2022, 55 (24): : 197 - 202
  • [49] A state-of-charge and capacity estimation algorithm for lithium-ion battery pack utilizing filtered terminal voltage
    Chun, Chang Yoon
    Yoon, Sung Hyun
    Cho, B.H.
    Kim, Jonghoon
    World Electric Vehicle Journal, 2015, 7 (01): : 71 - 75
  • [50] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945