Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm

被引:147
|
作者
Lipu, Molla S. Hossain [1 ]
Hannan, Mahammad A. [2 ]
Hussain, Aini [1 ]
Saad, Mohamad H. [1 ]
Ayob, Afida [1 ]
Uddin, Mohammad Nasir [3 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[2] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Malaysia
[3] Lakehead Univ, Fac Engn, Thunder Bay, ON P7B 5E1, Canada
关键词
Electric vehicle; extreme learning machine; gravitational search algorithm; lithium-ion NMC battery; state of charge (SOC); NEURAL-NETWORK MODEL; OPEN-CIRCUIT VOLTAGE; ONLINE ESTIMATION;
D O I
10.1109/TIA.2019.2902532
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops a state-of-charge (SOC) estimation model for a lithium-ion battery using an improved extreme learning machine (ELM) algorithm. ELM is suitable for an SOC estimation since the ELM algorithm has fast estimation speed, good generalization performance, and high accuracy. However, the performance of ELM is highly dependent on training accuracy and the number of neurons in a hidden layer. Hence, a gravitational search algorithm (GSA) is applied to improve the ELM computational intelligence by searching for the optimal value hidden layer neurons. The optimal ELM-based GSA model does not require internal battery knowledge and mathematical model for an SOC estimation. The model robustness is validated at different temperatures using different electric vehicle drive cycles. The performance of the ELM-GSA model is verified with two popular neural network methods: back-propagation neural network (BPNN) and radial basis function neural network (RBFNN). The results are evaluated using different error rates and computation costs. The results demonstrate that the ELM-based GSA model offers a higher accuracy and lower SOC error rate than those of BPNN-based GSA and RBFNN-based GSA models. Furthermore, a detailed comparative study between the proposed model and existing SOC strategies is conducted, which also demonstrates the superiority of the proposed model.
引用
收藏
页码:4225 / 4234
页数:10
相关论文
共 50 条
  • [41] Low complexity state-of-charge estimation for lithium-ion battery pack considering cell inconsistency
    Dong, Haonan
    Huang, Wei
    Zhao, Yixin
    JOURNAL OF POWER SOURCES, 2021, 515
  • [42] Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation of the State-of-Charge of a Lithium-Ion Battery
    Kim, Daehyun
    Goh, Taedong
    Park, Minjun
    Kim, Sang Woo
    ENERGIES, 2015, 8 (11) : 12409 - 12428
  • [43] Parallel Arithmetical Unscented Kalman Filter Technic for Lithium-ion Battery State-of-Charge Estimation
    Liu, Weilong
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 669 - 675
  • [44] State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles
    Zhang, Zhiyong
    Jiang, Li
    Zhang, Liuzhu
    Huang, Caixia
    JOURNAL OF ENERGY STORAGE, 2021, 37
  • [45] Enhanced lithium-ion battery state-of-charge estimation for Electric Vehicles using the AOA-DNN approach
    Thangaraj, Kokilavani
    Indiran, Rajarajeswari
    Ananth, Vasantharaj
    Raman, Mohan
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06) : 2856 - 2873
  • [46] State-of-Charge Estimation for Lithium-ion Battery Pack Using Reconstructed Open-Circuit-Voltage Curve
    Chun, Chang Yoon
    Seo, Gab-Su
    Yoon, Sung Hyun
    Cho, Bo-Hyung
    2014 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIROSHIMA 2014 - ECCE-ASIA), 2014, : 2272 - 2276
  • [47] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Yuzhen Jin
    Chenglong Su
    Shichang Luo
    International Journal of Automotive Technology, 2022, 23 : 1003 - 1011
  • [48] Dual-Task Learning for Joint State-of-Charge and State-of-Energy Estimation of Lithium-Ion Battery in Electric Vehicle
    Bao, Zhengyi
    Nie, Jiahao
    Lin, Huipin
    Li, Zhi
    Gao, Kejie
    He, Zhiwei
    Gao, Mingyu
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 558 - 569
  • [49] A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation
    Zhang, Shuzhi
    Zhang, Chen
    Jiang, Shiyong
    Zhang, Xiongwen
    ENERGY, 2022, 246
  • [50] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Jin, Yuzhen
    Su, Chenglong
    Luo, Shichang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (04) : 1003 - 1011