Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm

被引:147
|
作者
Lipu, Molla S. Hossain [1 ]
Hannan, Mahammad A. [2 ]
Hussain, Aini [1 ]
Saad, Mohamad H. [1 ]
Ayob, Afida [1 ]
Uddin, Mohammad Nasir [3 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[2] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Malaysia
[3] Lakehead Univ, Fac Engn, Thunder Bay, ON P7B 5E1, Canada
关键词
Electric vehicle; extreme learning machine; gravitational search algorithm; lithium-ion NMC battery; state of charge (SOC); NEURAL-NETWORK MODEL; OPEN-CIRCUIT VOLTAGE; ONLINE ESTIMATION;
D O I
10.1109/TIA.2019.2902532
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops a state-of-charge (SOC) estimation model for a lithium-ion battery using an improved extreme learning machine (ELM) algorithm. ELM is suitable for an SOC estimation since the ELM algorithm has fast estimation speed, good generalization performance, and high accuracy. However, the performance of ELM is highly dependent on training accuracy and the number of neurons in a hidden layer. Hence, a gravitational search algorithm (GSA) is applied to improve the ELM computational intelligence by searching for the optimal value hidden layer neurons. The optimal ELM-based GSA model does not require internal battery knowledge and mathematical model for an SOC estimation. The model robustness is validated at different temperatures using different electric vehicle drive cycles. The performance of the ELM-GSA model is verified with two popular neural network methods: back-propagation neural network (BPNN) and radial basis function neural network (RBFNN). The results are evaluated using different error rates and computation costs. The results demonstrate that the ELM-based GSA model offers a higher accuracy and lower SOC error rate than those of BPNN-based GSA and RBFNN-based GSA models. Furthermore, a detailed comparative study between the proposed model and existing SOC strategies is conducted, which also demonstrates the superiority of the proposed model.
引用
收藏
页码:4225 / 4234
页数:10
相关论文
共 50 条
  • [21] Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Battery Using Unscented Kalman Filter
    Partovibakhsh, Maral
    Liu, Guangjun
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3962 - 3967
  • [22] State-Of-Charge and Parameter Estimation of Lithium-Ion Battery Using Dual Adaptive Filter
    Takegami, Tomoki
    Wada, Toshihiro
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1332 - 1337
  • [23] The State of Charge Estimation of Lithium-ion Batteries Using an Improved Extreme Learning Machine Approach
    He, Wei
    Ma, Hongyan
    Zhang, Yingda
    Wang, Shuai
    Dou, Jiaming
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2727 - 2731
  • [24] Lithium-ion battery state of charge estimation using a fractional battery model
    Francisco, J. M.
    Sabatier, J.
    Lavigne, L.
    Guillemard, F.
    Moze, M.
    Tari, M.
    Merveillaut, M.
    Noury, A.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [25] Application of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery
    Wang, Xiaotian
    Yang, Zhijia
    Wang, Yingnan
    Wang, Zhongfeng
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (08): : 1732 - 1738
  • [26] State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms
    Chandran, Venkatesan
    Patil, Chandrashekhar K.
    Karthick, Alagar
    Ganeshaperumal, Dharmaraj
    Rahim, Robbi
    Ghosh, Aritra
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01):
  • [27] State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification
    Zhao, Xiaobo
    Qian, Xiao
    Xuan, Dongji
    Jung, Seunghun
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [28] Improved Deep Extreme Learning Machine for State of Health Estimation of Lithium-Ion Battery
    Chen, Yan
    Meng, Junli
    Ming, Shunyang
    Tong, Gengxin
    Qi, Ziyi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [29] State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
    Lee, Seongjun
    Kim, Jonghoon
    Lee, Jaemoon
    Cho, B. H.
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1367 - 1373
  • [30] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    APPLIED ENERGY, 2017, 207 : 384 - 393