Geometric ergodicity of Metropolis algorithms

被引:137
作者
Jarner, SF [1 ]
Hansen, E
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Copenhagen, Dept Theoret Stat, DK-1168 Copenhagen, Denmark
关键词
Monte Carlo; Metropolis algorithm; geometric ergodicity; super-exponential densities;
D O I
10.1016/S0304-4149(99)00082-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ln this paper we derive conditions for geometric ergodicity of the random-walk-based Metropolis algorithm on R-k. We show that at least exponentially light tails of the target density is a necessity. This extends the one-dimensional result of Mengersen and Tweedle (1996, Arm. Statist. 24, 101-121). For super-exponential target densities we characterize the geometrically ergodic algorithms and we derive a practical sufficient condition which is stable under addition and multiplication. This condition is especially satisfied for the class of densities considered in Roberts and Tweedle (1996, Biometrika 83, 95-110). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:341 / 361
页数:21
相关论文
共 17 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[3]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[4]  
CHAN KS, 1994, ANN STAT, V22, P1747, DOI 10.1214/aos/1176325754
[5]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[6]   CENTRAL-LIMIT-THEOREM FOR ADDITIVE-FUNCTIONALS OF REVERSIBLE MARKOV-PROCESSES AND APPLICATIONS TO SIMPLE EXCLUSIONS [J].
KIPNIS, C ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :1-19
[7]  
Mengersen KL, 1996, ANN STAT, V24, P101
[8]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[9]   COMPUTABLE BOUNDS FOR GEOMETRIC CONVERGENCE RATES OF MARKOV CHAINS [J].
Meyn, Sean P. ;
Tweedie, R. L. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :981-1011
[10]  
Polson N.G., 1996, BAYESIAN STAT, P297