Geometric ergodicity of Metropolis algorithms

被引:134
作者
Jarner, SF [1 ]
Hansen, E
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Copenhagen, Dept Theoret Stat, DK-1168 Copenhagen, Denmark
关键词
Monte Carlo; Metropolis algorithm; geometric ergodicity; super-exponential densities;
D O I
10.1016/S0304-4149(99)00082-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ln this paper we derive conditions for geometric ergodicity of the random-walk-based Metropolis algorithm on R-k. We show that at least exponentially light tails of the target density is a necessity. This extends the one-dimensional result of Mengersen and Tweedle (1996, Arm. Statist. 24, 101-121). For super-exponential target densities we characterize the geometrically ergodic algorithms and we derive a practical sufficient condition which is stable under addition and multiplication. This condition is especially satisfied for the class of densities considered in Roberts and Tweedle (1996, Biometrika 83, 95-110). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:341 / 361
页数:21
相关论文
共 17 条